Considerations for cis-Women in HIV Cure Research

Jessica Prodger, Western University

Pathways to an HIV cure: Research and advocacy priorities

I have no relevant financial relationships with ineligible companies to disclose.
Consideration of the attributes of biological sex associated with cis-Women in HIV Cure Research
"Female" Biological Sex

| Two X chromosomes | Cis women
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XXY males and intersex peoples, trans men & other gender diverse people</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Epigenetic Profile</th>
<th>Exogenous hormones can influence gene methylation: (X)XY people on feminizing hormones (transfeminine)</th>
</tr>
</thead>
</table>

Sex hormones (estrogens progesterone)	(X)XY people on feminizing hormones
	(X)XX people on masculinizing hormones
	Effect of pregnancy, menopause, etc.
Sex & HIV Pathogenesis

- Female sex
- High CD4 T cell counts & CD4/CD8 ratios
- Low early viral loads
- Faster progression at a given VL

Adapted from Sterling et al. JID 1999
Sex & Immunology

- X chromosome genes
 - *TLR7*, *FOXP3*, and 10% of all microRNAs

- Epigenetic modification
 - Methylation patterns and transcriptomes

- Female = higher IFNα
 - Bi-allelic expression = more TLR7
 - Estrogen enhances response to TLR7

Adapted from Addo et al. JID 2014
Sex & Cure Research

• Most ARTs target virus

• Many curative agents target host factors
 • Immune pathways (e.g., TLRs, PD-1)
 • Epigenetic pathways
 • Host genes

19% of ART trial participants are women

11% of cure trial participants are women

Curno et al JAIDS 2016
Sub-Saharan Africa & Biological Sex

• Generalized epidemic, heterosexual transmission
 • Rakai Health Sciences Program (RHSP), Uganda

• 90 adults living with HIV
 • 57 females, 33 males
 • ART-suppressed

• Reservoir Quantification:
 • gag qPCR = all provirus (defective and intact)
 • QVOA: outgrowth = replication-competent only
 • Intact?? Problem = HIV subtype

Adapted from Bruner et al.
Controlling for: pre-ART VL, nadir CD4, time on ART, CD4:CD8 ratio:

\[\Delta \log_{10} \text{IUPM} = 0.49, \ p < 0.01 \]
How to interpret?

- Smaller replication competent reservoir?
- Poor latency reversal?

![Graphs showing QVOA outgrowth and HIV-1 DNA frequency in males and females.](image)
Estrogen & HIV Transcription

- HIV-1 RNA levels vary with menses
 - lower in follicular when estrogen peaks

- Estrogen inhibits HIV transcription
 - β-estradiol \rightarrow ERα (ESR1) suppresses HIV

- Blocking ERα enhances iHDAC (vorinostat = SAHA)

- β-estradiol ↓ LRA-induced HIV expression

- MOXIE Trial
 - No effect of tamoxifen on vorinostat reactivation in post-menopausal females

Adapted from Das et al. PNAS 2018
Considerations for Research

- Estrogen may limit efficacy of latency reversal agents
 - interfere with reactivation-based quantification assays (QVOA)

- Hormones/chromosomes may impact immunomodulatory cures
 - e.g., TLR7 agonists, PD-1 inhibitors

- Subtype, layered on sex (sub-Saharan Africa)

- Need more diversity in cure research
 - Careful design: menses, puberty, pregnancy, menopause, hormonal contraception, transition-related hormone therapy...
 - Community engagement: novel agents with risk
AIDS 2022 Affiliated Independent Event

Thomas Quinn
Andrew Redd
Steven Reynolds

Ron Gray
Maria Wawer
Eileen Scully
Robert Siliciano
Janet Siliciano
Adam Capoferrer
Kyungyoon Kwon
Jun Lai

Katherine Yu
Yun-Hee Choi
Sarah Gowanlock

David Serwadda
Jingo Kasule
Taddeo Kityamuweesi
Paul Buule
Sarah Kalibbala
Margaret Anyokorit
Anthony Ndyanabo
Aggrey Anok

People of Rakai, who participated in research