The Philadelphia patient*

*I did not pick the title
The 4 HIV cures have been “gene therapy”

<table>
<thead>
<tr>
<th>Berlin Patient</th>
<th>London Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Malignancy</td>
<td>Hodgkin’s Lymphoma, diagnosed December 2012</td>
</tr>
<tr>
<td>Therapies Prior to CCR5Δ32</td>
<td>First line and salvage chemotherapies including anti-CD30</td>
</tr>
<tr>
<td>Induction (2X), and consolidation (1X) chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Stem Cell Donor</td>
<td>9/10 HLA match + CCR5Δ32</td>
</tr>
<tr>
<td>10/10 HLA match + CCR5Δ32</td>
<td></td>
</tr>
<tr>
<td>Transplant #1</td>
<td>May 2016. Conditioning included lomustine, ara-C, cyclophosphamide, etoposide (LACE), and anti-CD52</td>
</tr>
<tr>
<td>February 2007. Conditioning included fludarabine, cytarabine, ara-c, cyclophosphamide, rabbit antithymocyte globulin (ATG), 400-cGy TBI</td>
<td></td>
</tr>
<tr>
<td>ART Discontinued</td>
<td>16 months post-transplantation</td>
</tr>
<tr>
<td>Day of transplantation</td>
<td></td>
</tr>
<tr>
<td>Transplant #2</td>
<td>N/A</td>
</tr>
<tr>
<td>March 2008. Conditioning included cytarabine, gemtuzumab ozogamicin (anti-CD33), 200-cGy TBI</td>
<td></td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>Cyclosporine A, short-course methotrexate. <1 year treatment.</td>
</tr>
<tr>
<td>Cyclosporine A, methylprednisolone, mycophenolate mofetil, ended 38 months post-transplantation. >3 years treatment.</td>
<td></td>
</tr>
<tr>
<td>GVHD</td>
<td>Grade I, 77 days post-transplant</td>
</tr>
<tr>
<td>Grade I following first transplant</td>
<td></td>
</tr>
<tr>
<td>ART-Free HIV-1 Remission</td>
<td>18 months</td>
</tr>
<tr>
<td>Over 12 years</td>
<td></td>
</tr>
</tbody>
</table>

They tend to be named after the city where the intervention was done

The Philadelphia patient is not a “cure”
CCR5 modification. Can we do better, increase the engraftment of genetically modified cells by conditioning with CTX? Can you avoid AD5 vectors?
Schedule of Events

- **Leukapheresis**
- **Rectal biopsy**
- **Safety labs**
- **HIV RNA**
- **Cell infusion (d 0)**
- **Cyclophosphamide (d -2)**

STEP 1
Baseline evaluation manufacturing

STEP 2
SB-728mR T ± CTX
- Alone
- CTX 1 g/m²
- CTX 1.5 g/m²

STEP 3
Analytical treatment interruption

STEP 4
ART
Monthly visits until HIV BLQ

Successful ART

16 week analytical treatment interruption

Successful ART

-10 weeks

0 1 2 3 4 6 8 9 10 12 14 16 20 24 >48 weeks

weeks

weeks

weeks
The frequency of modification is similar using mRNA
Is the delay related to effects on the reservoir?
Effects on the HIV reservoir (IPDA, Accelavir)

A

5' defective viruses per million CD4+ T cells

P = 0.63

B

3' defective viruses per million CD4+ T cells

P = 0.14

C

Intact viruses per million CD4+ T cells

P = 0.54

Before After

202

204

205

206

301

302

303

304

305
If there are no effects on the reservoir, why there is a delay in rebound?

We looked at the HIV-specific CD8+ T cell gag responses before and after against multiple peptide pools.
Lower viremia
Greater ATI duration
Are the modified CD8 putting pressure on the virus?
Engineering T cells to redirect specificity from peptide/MHC to HIVEnvelope

HIV-infected cell

HIV-specific CAR T cell

Chimeric Antigen Receptor

Mitigate the possibility of HIV escape
Avoid MHC downregulation

Costimulation (4-1BB, CD28)

TCR signaling component

HIV entry receptor
A Pilot Study of T Cells Genetically Modified by CCR5-specific ZFNs and CD4 Chimeric Antigen Receptor in HIV-infected Subjects (NCT03617198)

Steps

1. **Cell Manufacturing**
 - Duration: -15 weeks

2. **ART + CAR/ZFN**
 - Duration: 0 weeks
 - Cohort 1: 1 day
 - Cohort 2: 8 weeks

3. **Treatment Interruption + CAR/ZFN**
 - Duration: 3 weeks
 - Cohort 1: 16 weeks
 - Cohort 2: 24 weeks

4. **Treatment Interruption + CAR/ZFN**
 - Duration: 4 weeks
 - *Only if HIV VL remains ≤1000 copies/ml at end of Step 3

5. **ART**
 - Duration: 5 weeks
 - Monthly visits until HIV BLQ

WEEKS

- Cell infusion at Day 0
- Cohort 1- engraftment (step 2) of 1 day before ATI
- Cohort 2- engraftment (step 2) 8 weeks before ATI

1. To what extent does ongoing HIV replication contribute to the maintenance of the HIV reservoir?
2. Can engineered T cells restore functionality to endogenous HIV-specific T cell populations?
3. Can engineered T cells provide durable control of HIV replication?
4. When is the best time to do the ATI?
Results

In **blue** participants that started ATI 1 day after the infusion
In **red** participants that waited for 8 weeks
Results
Participant 205, 301 and 2-third time is a charm?

<table>
<thead>
<tr>
<th>Study ID#</th>
<th>Sex</th>
<th>Race</th>
<th>Age at Consent</th>
<th>Historic VL copies/mL</th>
<th>Historical VL Date</th>
<th>Years HIV infection</th>
<th>Screening CD4 abs (cells/μl)</th>
<th>Viral Load Set Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4CAR-ZFN-02</td>
<td>M</td>
<td>Caucasian</td>
<td>58</td>
<td>165,810</td>
<td>08/24/2009</td>
<td>10</td>
<td>1785</td>
<td>165,810</td>
</tr>
</tbody>
</table>

Viral Load: CD4ZFN-02

Viral Load SB728mR-301

The Journal of Clinical Investigation

CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication

Pablo Tebas, Julie K. Jadlowksy, Pamela A. Shav, Lifeng Tian, Erin Esparza, Andrea L. Brennan, Sung Yong Kim, Soo Yu Naing, Max W. Richardson, Ashley N. Vogel, Colby R. Maidim, Yong Hong, Xiaojun Liu, Simon F. Lacey, Anya M. Bauer, Felicity Mampoe, Lee R. Richman, Carl Lee, Dale Ando, Bruce L. Levine, David L. Portnoy, Yangbing Zhao, Don L. Siege, Katharine J. Bae, Carl H. June, and James L. Riley
Conclusions and questions

Safety: So far so good

Persistence: this is a big problem in the absence of antigen

How can we expand the CAR T cells?

Trafficking

Protection. A CD4 CAR makes the cell susceptible to HIV. Best strategy for protection

Best methods for genome editing

Best CAR signaling

Improving CAR persistence and effector function: Dual CARs
Future directions: ACTG proposal: Dual CAR plus vaccination
Acknowledgements

Penn ACTU
 Larisa/Amber/Jenna/Mark/Su Kim
 Joe Quinn/Eileen Donaghy/Jamie
 Rob Roy MacGregor

Jacoby Medical Center
 David Stein
 Angelo Seda

U. Penn Abramson Inst.
 Carl June
 Bruce Levine
 Jim Riley
 Richard Carroll
 Julie Jadlowsky
 Liz Veloso

Wistar Institute
 Luis Montaner

Penn CFAR
 Clinical Core
 Ian Frank
 Immunology Core
 John Wherry
 Hong Kong
 Kevin Gayout
 Viral/Molecular core
 Farida Shaheen
 Katie Bar
 Ron Collman
 Rick Bushman
 Jim Hoxie

ViRxSys
Sangamo
Adaptaminue
Tmunity
Penn CTRC
NIH-NIAID