

Session: Let's talk about HIV Cure

in Javier Martinez-Picado

Towards

RIAS

an HIV Cure

Conflict of interest disclosure

Affiliated Independent Event

I have no relevant financial relationships with ineligible companies to disclose in the context of this presentation topic

Outside the context of this presentation, J.M-P. has received institutional grants and educational/consultancy fees from AbiVax, AstraZeneca, Gilead Sciences, Grifols, Janssen, Merck Sharp & Dohme, and ViiV Healthcare.

JMPicado_Montreal-220728

Extrem Cases of HIV-1 Disease Progression

Are elite controllers a model for a functional cure?

- Is it the virus?
 - Resevoirs, evolution, virus intactness?
- Is it the host?
 - Genetics, immunology, immuno-genetics?
- But elite controllers are <u>heterogeneous</u> in terms of long-term clinical, virological and immunological progression
- Are SOME elite controllers a model for a functional cure?
 - Undetectable plasma viremia and normal CD4 T-cell counts for >10 years appear to represent a very promising model

Autran et al. 2011. Curr Opin HIV AIDS; Canoui et al. 2017. Open forum Infect Dis

Extrem Cases of HIV-1 Disease Progression

"Exceptional" HIV Elite Controllers (EEC) the limitation of definitions ...

- People with HIV that spontaneously control viral replication in absence of immune dysfunction
- No disease progression in absence of antiretroviral therapy
- Extraordinarily low HIV burdens
- Comparatively weak immune response
- Long-term control: >10-25 years
- Partially reactive for HIV-specific antibodies

Reports on Exceptional HIV Elite Controllers

Years after HIV diagnose

Mendoza et al. 2012; Casado et al. 2020; Jiang et al. 2020; Turk et al. 2022

Clinical evolution

- Median of 24 (range 6–64) plasma viral load tests
 - Always below the limit of detection of contemporary assays
 - Except for ≤ 2 non-consecutive blips below 400 cps/ml
- Ultrasensitive plasma viremia / SCA below 0.4 cps/ml
 - Except for 1 sample of 2 cps/ml
- Median absolute CD4+ T cells in last determination of 921 (range 529-1488)
- Ratio CD4/CD8 always >1
 - Except for the Esperanza's case in whom is variable

Host Genetic Determinants

	#1	#2	#3	#4/SF0	EEC-3	EEC-9	EEC-56	Esperanza
CCR5	WT/Δ32	WT/WT	WT/WT	WT/WT	WT/WT	WT/WT	WT/WT	WT/WT
HLA class I A loci	24, 31			02, 30	02, 02	02, 31	01, 02	02, 31
HLA class I B loci	40, 44	15, <mark>57</mark>	44, 51	13, <mark>57</mark>	<mark>27</mark> , 58	39, 57	14, 57	15, 44
CCR2 V64I rs1799864					WT/WT	WT/WT	WT/WT	
HLA C rs9264942					-35 TT→CC	-35 TT→CC	-35 TT→CC	

Migueles et al. 2000; Kiepiela et al. 2004; Lambotte et al. 2005; Bailey et al. 2006; Fellay et al. 2006; McLaren et al. 2012; Mendoza et al. 2012; Casado et al. 2020; Jiang et al. 2020; Turk et al. 2022

JMPicado_Montreal-220728

Proviral DNA and qVOA

	#1	#2	#3	#4/SF0	EEC-3	EEC-9	EEC-56	Esperanza
Proviral DNA	6.56	25.2	n.a.	IPDA ⁻	27.09	8.75	10.05	n.a.
copies/E6 cells	PBMC	PBMC		14E6 rCD4+	4E6 tCD4+	2.6E6 tCD4+	3.2E6 tCD4+	
qVOA	<0.004	<0.002	0.046	<0.004	<0.025	<0.018	<0.018	<lod< td=""></lod<>
copies/E6 cells				41E6 tCD4+ 340E6 rCD4+	28E6 tCD4+	38E6 tCD4+	63E6 tCD4⁺	150E6 rCD4⁺
Tissues copies/E6 cells	n.a.	colon 2.8cp E6/CD4	colon 1.9cp E6/CD4	HIV DNA⁻ in 4E6 CD45⁺ from rectum & ileum*	n.a.	n.a.	n.a.	placenta (neg)

qVOA: quantitative Viral Ourgrowth Assay; rCD4+: resting CD4⁺; tCD4⁺: total CD4⁺; n.a.: no available *, a previous sample from 2012 : <2.6 copies/10⁶cells in colon, and 42.4 copies/10⁶cells in ileum Mendoza *et al.* 2012; Casado *et al.* 2020; Jiang *et al.* 2020; Turk *et al.* 2022

Near-full length virus sequencing

337 amplification attempts with 12.4E6 CD4⁺ and 6.4E6 PBMCs Casado *et al.* 2020

Viral Evolution and Genetic Variability

- Very restricted genetic diversity: 0.010 ± 0.003 s/n
- Almost null viral genetic evolution

Envelope Functionality

- Cloned Envs from EEC allowed functional characterization of the initial events of the viral infection:
 - Ineffective binding to CD4 and the subsequent signaling activity to modify actin/tubulin cytoskeletons

- Low fusionDeficient e
 - Deficient entry and infection capacity

Cellular Immune Responses

- HIV-specific T-cell responses were present
 - Comparatively higher and greater polyfunctionality than those from PWH on ART
 - Similar to other LTNP/EC

- Host CD4⁺ T cells are susceptible to infection with R5 or X4-tropic HIV
- Host CD8+ T cells are effective in suppressing viral viral replication ex vivo

Humoral Immune Responses

- All weakly reactive, either Western Blot or ELISA
 - But superior to 2 cases of stem-cell transplant with CCR5 Δ 32/ Δ 32 donor cells (*IciStem cohort*)
 - Viral antigens and/or truncated viral proteins could be generated from defective genomes

Inflammation Biomarkers

- Similar to those in the blood of healthy donors
 - Innate immune responses seem to be relatively normalized

Analyses in greater number of subjects is required

Proviral HIV intactness and chromosomal location

Jiang C et al. 2020 Nature 2020; Turk et al. 2021. Ann Intern Med

Breakthroughs on the SFO and Esperanza cases

Bruce Walker, Steven Deeks, Janet Siliciano, Robert Siliciano

Jiang C et al. 2020 Nature 2020; Turk et al. 2021. Ann Intern Med

Near-full length virus sequencing

- Full-Genome Individual Proviral Seq
- IPDA
- Viral outgrowth assay

Essentially ... Defective Proviruses

Jiang C et al. 2020 Nature 2020; Turk et al. 2021. Ann Intern Med

Conclusions

- Consistently low, and apparently defective, viral DNA reservoir
- Practically null viral genetic evolution and extremely low complexity of the viral populations
 → absence of viral replication for >25 years
- Low population size and viral diversity are associated with low replication and viral fitness
- Contribution of host genetic factors and cellular-adaptive immune responses
- Hypotheses:
 - Primary infection might have occurred with a low fitness viral founder strain
 - Initial innate immune responses might have shaped the selection of an unfit virus

Is it possible to induce a permanent control of HIV-1 pathogenesis?

Future directions

Current cases on follow up (years)

Argentina, Belgium, Spain, United States

jmpicado@irsicaixa.es

*, unpublished cases

Future directions

Hütter *et al.* 2009 NEJM; Gupta *et al.* 2019 Nature; Jensen *et al.* CROI 2019; Hsu *et al.* CROI 2022

Gálvez et al. 2020. EBioMedicine; Gálvez et al. 2022. J Int Med

Acknowledgements

For the generosity of the EEC involved in this presentation

IrsiCaixa ADIS Research Institute, Barcelona

M. Salgado

C. Gálvez

J. Blanco

B. Clotet

Centro Nacional de Microbiología, Madrid

C. Casado

M. Pernas

V. Sánchez-Merino

A. Merino-Mansilla

I. Olivares

C. Lopez-Galindez

Institute of Biomedicine of Seville

L. Tarancón-Diez R. De Pablo-Bernal E. Ruiz-Mateos

Centro Sanitario Sandoval, Madrid

M. Vera C. Rodríguez J. del Romero Northwestern University Feinberg School of Medicine, Chicago R Lorenzo-Redondo

NIAID, Bethesda

S. A. Migueles M. Connors I. Sereti

Ragon Institute, Cambridge M. Lichterfeld X. G. Yu

UCSF

P. Hunt

Emory Univ.

V. Marconi

Univ of Ghent L. Vandekerckhove

Hosp. La Paz, Madrid J. González

Pasteur Institute, Paris A. Saez-Cirion

iE

MAKING AIDS HISTORY

NIAID

María Salgado

J. del Romero, C. Rodríguez, C. Lopez-Galindez

JMPicado Montreal-220728