Pard Sess

Towards an HIV Cure **SIAS**

Pardons Marion, HIV Cure Research Center (Belgium) Session 3: Cure advances globally

HIV reactivation from latency using a Tat compound

Marion Pardons¹, Basiel Cole¹, Laurens Lambrechts¹, Sofie Rutsaert¹, Ytse Noppe¹, Jerel Vega², Filmon Eyassu³, Erik Nijs⁴, Ellen Van Gulck⁴, Daniel Boden⁵, Linos Vandekerckhove¹

¹HIV Cure Research Center, Ghent, Belgium; ²Arcturus Therapeutics, United States; ³Computational biology, Johnson and Johnson, Beerse, Belgium; ⁴Janssen Infectious Diseases, Beerse, Belgium; ⁵Janssen Infectious Diseases, South San Francisco, United States

Conflict of interest disclosure

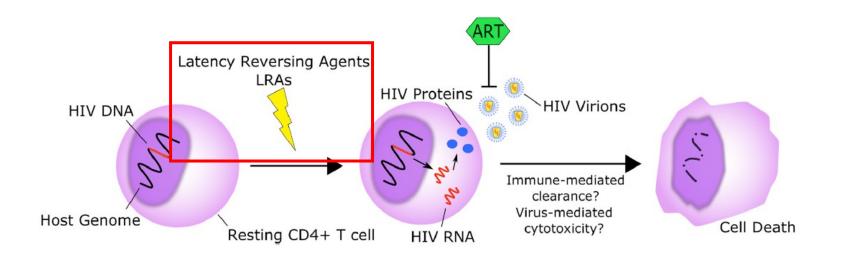
This work was done in collaboration with Janssen and funded by VLAIO

Affiliated Independent Event

AIDS 2022 Affiliated Independent Event

Towards

XIAS


an HIV Cure

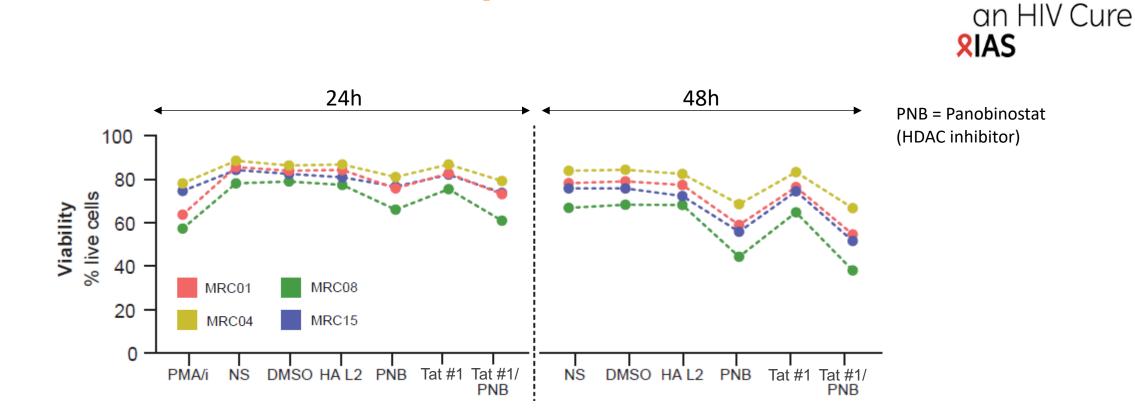
Shock-and-kill strategy

Towards

XIAS

an HIV Cure

Mitogens	Other classes of LRAs			
PMA, PHA, CD3/CD28	HDACi, PKC agonists, etc			
Gold standard for in vitro assays	Not as potent as mitogens to reactivate HIV			
Highly toxic $ ightarrow$ Not in the clinic	Safe to be used in vivo			
Induces global T cell activation	Some classes do not induce global activation			

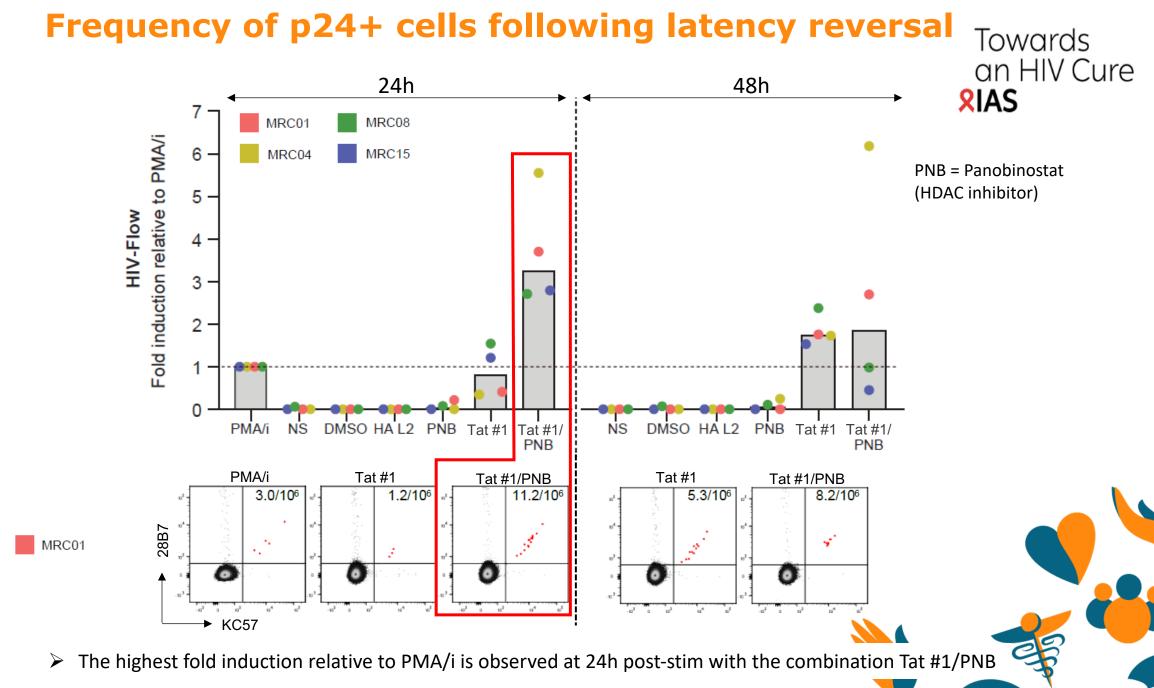

Identifying compounds that reactivate HIV efficiently without modifying the transcriptome/phenotype of the cells is of interest to study the profile of latently infected cells

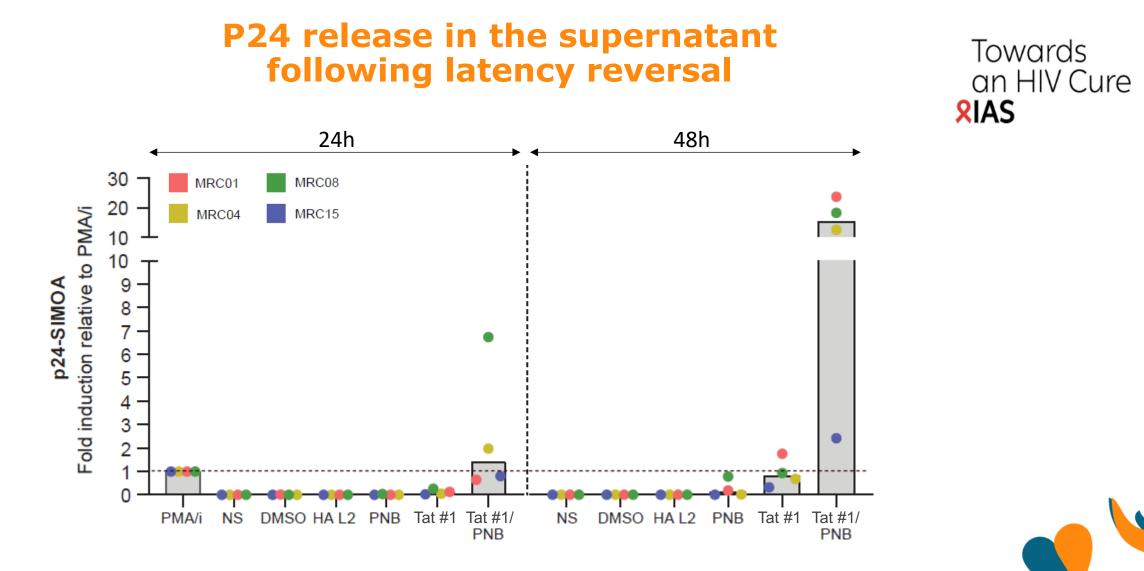
Clinical characteristics of the participants

Towards

an HIV Cure

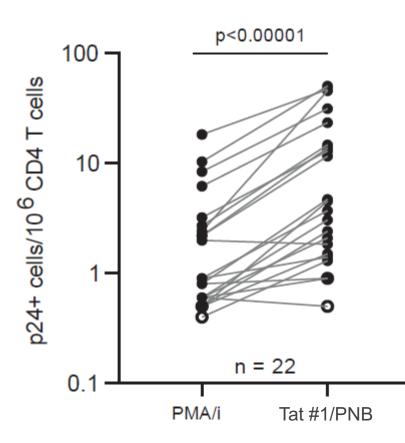
MRC01 55 M 0.3 44 B <20		•		004/000						
MRC02 62 M 1.2 484 B <20	Patient ID	Age	Gender	CD4/CD8 ratio	NADIR	Subtype	VL	Time since infection	Time to ART	ART duration
MRC03 33 M 0.7 114 F1 <20 30.7 16.0 14.6 MRC04 51 M 1.0 171 B <20	MRC01	55	M	0.3	44	В	<20	NA	NA	18.5
MRC04 51 M 1.0 171 B <20 NA NA 18.4 MRC05 42 M 1.3 492 B <20	MRC02	62	М	1.2	484	В	<20	NA	NA	4.4
MRC05 42 M 1.3 492 B <20 13.0 6.9 6.1 MRC06 50 F 0.9 226 C <20	MRC03	33	М	0.7	114	F1	<20	30.7	16.0	14.6
MRC06 50 F 0.9 226 C <20 NA NA 3.7 MRC07 37 M 1.1 382 B <20	MRC04	51	М	1.0	171	В	<20	NA	NA	18.4
MRC07 37 M 1.1 382 B <20 7.5 2.4 5.1 MRC08 50 M 0.5 488 B <20	MRC05	42	М	1.3	492	В	<20	13.0	6.9	6.1
MRC0850M0.5488B<2016.515.21.3MRC0953F0.8102A1<20	MRC06	50	F	0.9	226	С	<20	NA	NA	3.7
MRC0953F0.8102A1<20NANA17.1MRC1140M1.3350B<20	MRC07	37	М	1.1	382	В	<20	7.5	2.4	5.1
MRC1140M1.3350B<208.41.17.3MRC1231M1.0NAB<20	MRC08	50	М	0.5	488	В	<20	16.5	15.2	1.3
MRC1231M1.0NAB<2011.74.27.5MRC1326M1.3601Recomb B/F1<20	MRC09	53	F	0.8	102	A1	<20	NA	NA	17.1
MRC1326M1.3601Recomb B/F1<20NANA7.2MRC1461M0.9211CRF02_AG<20	MRC11	40	М	1.3	350	В	<20	8.4	1.1	7.3
MRC1461M0.9211CRF02_AG<2011.05.15.9MRC1556M0.698B<20	MRC12	31	М	1.0	NA	В	<20	11.7	4.2	7.5
MRC1556M0.698B<20NANA14.7MRC1932M0.8395B<20	MRC13	26	М	1.3	601	Recomb B/F1	<20	NA	NA	7.2
MRC1932M0.8395B<20NANA1.4MRC2049M0.6294B<20	MRC14	61	М	0.9	211	CRF02_AG	<20	11.0	5.1	5.9
MRC2049M0.6294B<2019.83.416.4MRC2161M0.9179B<20	MRC15	56	М	0.6	98	В	<20	NA	NA	14.7
MRC2161M0.9179B<2030.65.824.8MRC2262M0.8196B<20	MRC19	32	М	0.8	395	В	<20	NA	NA	1.4
MRC2262M0.8196B<2011.63.08.7MRC2358M0.8182B<20	MRC20	49	М	0.6	294	В	<20	19.8	3.4	16.4
MRC2358M0.8182B<2017.00.716.3MRC2454M0.9231B<20	MRC21	61	М	0.9	179	В	<20	30.6	5.8	24.8
MRC2454M0.9231B<2015.62.812.8MRC2548M0.7361B<20	MRC22	62	М	0.8	196	В	<20	11.6	3.0	8.7
MRC25 48 M 0.7 361 B <20 14.1 2.6 11.5 JZG3034 39 M 0.7 356 B <20	MRC23	58	М	0.8	182	В	<20	17.0	0.7	16.3
JZG3034 39 M 0.7 356 B <20 3.0 0.5 2.4	MRC24	54	М	0.9	231	В	<20	15.6	2.8	12.8
	MRC25	48	М	0.7	361	В	<20	14.1	2.6	11.5
STAR10 55 M 0.7 327 B <20 21.3 3.0 18.3	UZG3034	39	М	0.7	356	В	<20	3.0	0.5	2.4
	STAR10	55	М	0.7	327	В	<20	21.3	3.0	18.3

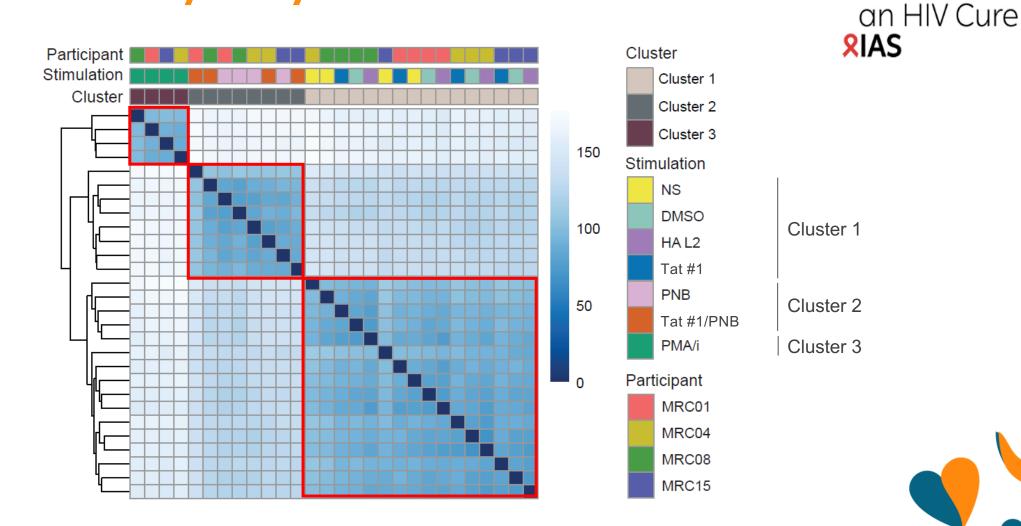



Viability of the cells

Towards

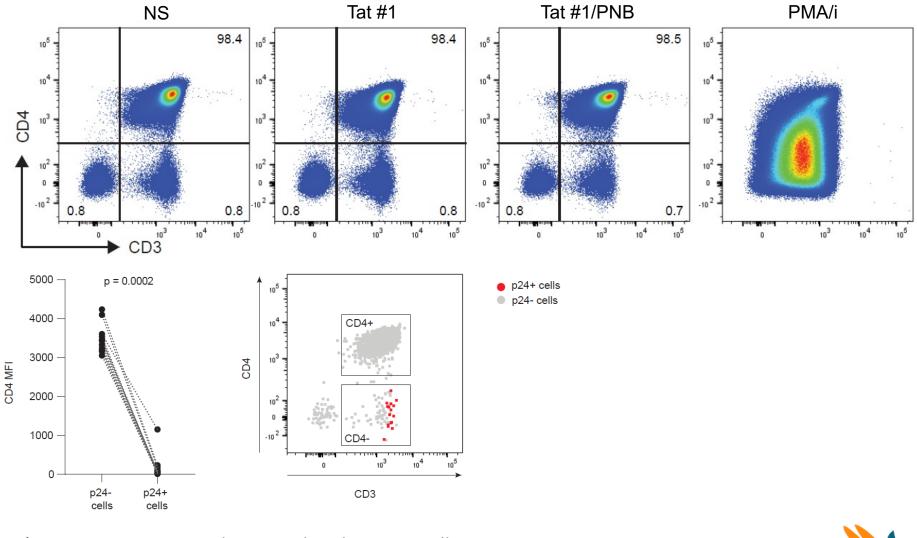
Viability of CD4 T cells is not affected by Tat #1 treatment (both at 24h and 48h)


Cell viability is impaired following PNB treatment at 48h


Stimulation with Tat #1 leads to viral particles release in the culture supernatant

Frequencies of p24+ cells following stimulation with PMA/i vs Tat #1/PNB Towards an HIV Cure \$IAS

Significantly higher frequencies of p24+ cells are observed following Tat #1/PNB stimulation when compared to PMA/i (median fold increase = 3.9)

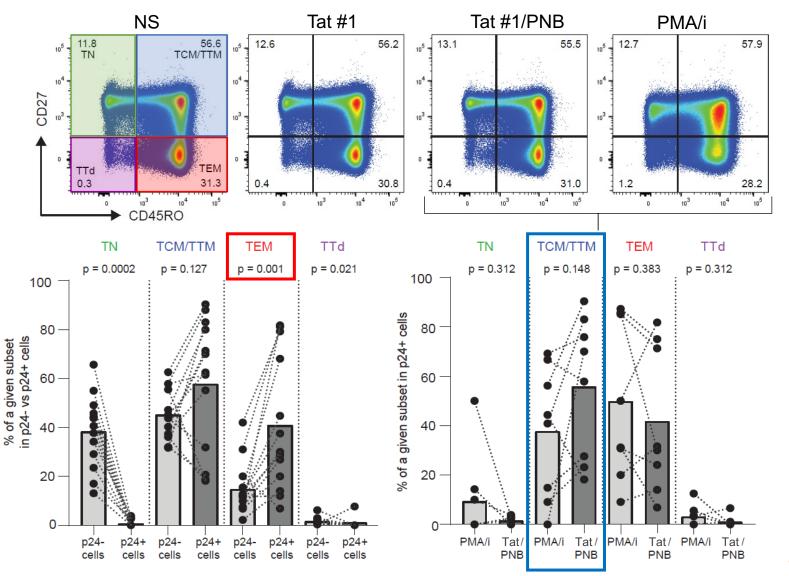

Microarray analyses on bulk CD4 T cells

Towards

> Tat #1 has a minimal impact on the transcriptomic profile of the cells (clusters with the negative controls)

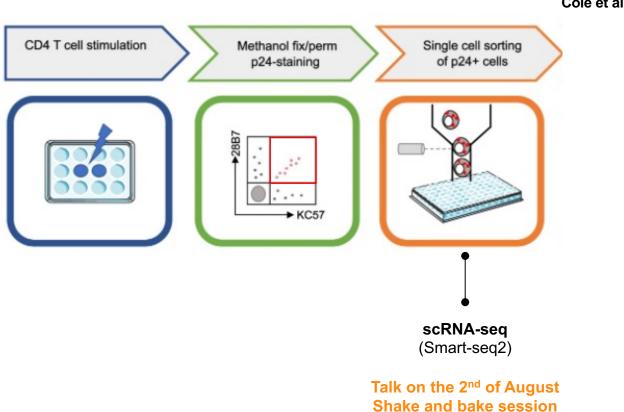
Phenotype of p24+ cells following Tat #1/PNB treatment

CD4 expression is downregulated in p24+ cells



Towards

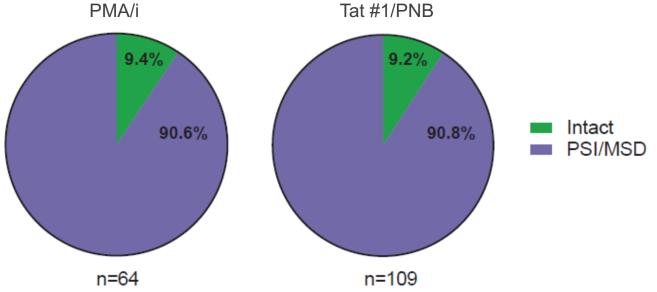
XIAS


an HIV Cure

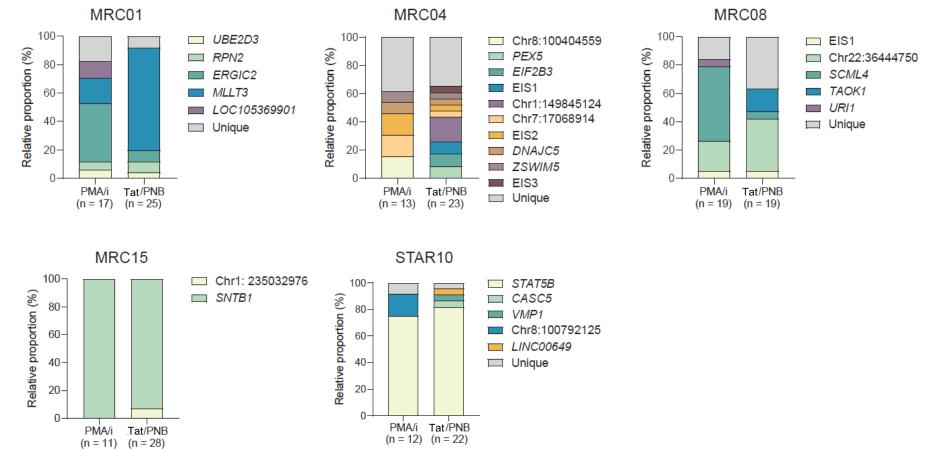
Phenotype of p24+ cells following Tat #1/PNB treatment

Towards an HIV Cure **SIAS**

Studying the genetic and transcriptional environment Towards of proviruses in p24+ cells an HIV Cure



STIP-Seq Cole et al, Nat Com, 2021


XIAS

Analysis of near-full length sequences in p24+ cells following latency reversal Towards an HIV Cure XIAS

- Most of the p24+ cells harbor PSI/MSD defective proviruses
- Proportions of genome-intact or PSI/MSD-defective proviruses do not differ significantly after PMA/i or Tat #1/PNB stimulation

Analysis of the integration sites in p24+ cells following latency reversal

- Tat #1/PNB globally reactivates the same clones as PMA/i
- Some rare and minor clones were detected only in one of the two conditions
- Some clones are represented in different proportions between the two conditions (e.g. MLLT3, SCML4)

Towards

RIAS

an HIV Cure

Conclusions

- Tat : physiologically relevant, not toxic *in vitro*
- Does not modify the transcriptome/phenotype of the cells
- In combination with PNB:
 - It induces latency reversal in a higher proportion of latently infected cells than PMA/i
 - Reactivates the same clones than PMA/i, with some exceptions
- Can be used as a tool to study:
 - The proviral sequence and integration site in p24+ cells
 - Phenotype of p24+ cells

Acknowledgements

All the participants from the study!

HCRC Basiel Cole Laurens Lambrechts Sofie Rutsaert Ytse Noppe Tine Struyve Linos Vandekerchove

Janssen Filmon Eyassu Erik Nijs Ellen Van Gulck Daniel Boden

Arcturus Therapeutics Jerel Vega

Jinho Park

Liège university

Anne Van den Broeke Jerome Wayet

<u><u></u>RIAS</u>

Towards

an HIV Cure

Flow cytometry and sequencing cores from Ghent and Janssen

