

aids2022.org

#AIDS2022

Zabrina Brumme, PhD Professor, Simon Fraser University, Canada Laboratory Director, British Columbia Centre for Excellence in HIV/AIDS

IAS Pathways to an HIV cure meeting 2022:

Cure Advances Globally

Virology of the reservoir:

\$AIDS 2022

a 15 minute summary

HIV life cycle

HIV life cycle

HIV RNA

HIV DNA

After this, the infected cell dies, or is eliminated by the immune system

HIV can persist inside cells as an integrated viral genome

HIV can persist inside cells as an integrated viral genome

These <u>viral reservoirs</u> are the main barrier to HIV remission and cure:

- -> antiretroviral therapies do not eliminate these cells
- -> these cells are *largely* invisible to the immune system
- -> these cells can persist for years

These viral reservoirs are the main barrier to HIV remission and cure:

- -> antiretroviral therapies do not eliminate these cells
- -> these cells are *largely* invisible to the immune system
- -> these cells can persist for years

-> these cells can clonally expand, producing daughter cells that also contain integrated HIV within them¹⁻⁵

¹Maldarelli et al 2014 PMID 24968937; ²Wagner et al 2014 PMID 25011556; ³Simonetti et al 2016 PMID 26858442; ⁴Hosmane et al 2017 PMID 28341641; ⁵Lorenzi et al 2016 PMID 27872306

Viral reservoirs can reactivate at any time to produce infectious HIV

Following transmission, HIV replicates and mutates, producing a genetically diverse viral population

Clonal expansion is a major way in which the reservoir sustains itself

Brodin et al, eLife 2016; PMID 27855060 Abrahams et al, Sci Trans Med 2019, PMID 31597754 Brooks et al, PLoS Pathogens 2020, PMID 32492044

Only ~2% proviruses persisting during long-term ART are genetically intact

Figure from: Bruner et al, Nature Medicine 2016, PMID 27500724. See also: Ho et al Cell 2013 PMID 24243014

Intact

Packaging signal and major splice donor site deletion

- Deletion within 5' half of the genome
- Deletion within 3' half of the genome
- Very large internal deletion
- Hypermutated
- Hypermutated and deleted
- Sequence insertions or inversions

¹Imamichi et al 2016 PMID 27432972; ²Imamichi et al 2020 PMID 32029589; ³Pollack et al 2018 PMID 29355843 Slide by

Slide by Natalie Kinloch

Studying the reservoir: key methods

1. Methods for reservoir *quantification*

2. Methods for (genetically) *characterizing reservoir cells*

Reservoir quantification #1: Quantitative Viral Outgrowth Assay (QVOA)

Reservoir quantification #1: Quantitative Viral Outgrowth Assay (QVOA)

Bruner et al, Nature 2019; 566(7):120

Image from http://www.labcritics.com/droplet-digital-pcr-to-measure-tumor-load-6498/

Image from http://www.labcritics.com/droplet-digital-pcr-to-measure-tumor-load-6498/

Image from http://www.labcritics.com/droplet-digital-pcr-to-measure-tumor-load-6498/

Reservoir genetic characterization: Full-length individual proviral sequencing

Figure adapted from Lee, Viruses 2021 PMID 34578455 and Patro et al, Viruses 2021 PMID 34960744. Also see Lee GQ et al, J Clin Investig 2017 PMID 28628034 ; Hiener et al Cell Rep 2017 PMID 29045846 **Also Q4PCR**: Gaebler et al, J Exp Med 2019 PMID 31350309

Reservoir genetic characterization: Full-length individual proviral sequencing

LIMITATION: This approach does not allow simultaneous study of other reservoir attributes (*e.g.* integration site)

Figure adapted from Lee, Viruses 2021 PMID 34578455 and Patro et al, Viruses 2021 PMID 34960744. Also see Lee GQ et al, J Clin Investig 2017 PMID 28628034 ; Hiener et al Cell Rep 2017 PMID 29045846 **Also Q4PCR**: Gaebler et al, J Exp Med 2019 PMID 31350309

SOLUTION:

"Multiply" your DNA to allow multi-parameter characterization

Figure adapted from Lee, viruses 2021 PMID 34578455 and Patro et al, Viruses 2021 PMID 34960744. Also see Lee GQ et al, J Clin Investig 2017 PMID 28628034 ; Hiener et al Cell Rep 2017 PMID 29045846 **Also Q4PCR**: Gaebler et al, J Exp Med 2019 PMID 31350309

SOLUTION:

"Multiply" your DNA to allow multi-parameter characterization

Figure adapted from Lee, viruses 2021 PMID 34578455 and Patro et al, Viruses 2021 PMID 34960744. Also see Lee GQ et al, J Clin Investig 2017 PMID 28628034 ; Hiener et al Cell Rep 2017 PMID 29045846 **Also Q4PCR**: Gaebler et al, J Exp Med 2019 PMID 31350309

Where is the reservoir? The answer is multidimensional

1. <u>Where in the</u> <u>cell's genome</u>did the provirus integrate?

2. <u>What cell types</u> harbor HIV reservoirs?

3. <u>What tissues in</u> <u>the body</u> harbor HIV reservoirs?

Deeks et al Nat Med 2021; PMID 34848888

Where is the reservoir? The answer is multidimensional

1. <u>Where in the</u> <u>cell's genome</u>did the provirus integrate?

2. <u>What cell types</u> harbor HIV reservoirs?

3. <u>What tissues in</u> <u>the body</u> harbor HIV reservoirs?

These locations influence reservoir longevity, reactivation, and genetic composition

Deeks et al Nat Med 2021; PMID 34848888

Intact proviruses in expanded CD4+ T-cell clones were preferentially integrated within KRAB domain-containing zinc finger (ZNF) genes. single
clone
inducible clone

Huang et al JEM 2021 PMID 34636876

Integration site influences the likelihood of persistence

Intact proviruses in expanded CD4+ T-cell clones were preferentially integrated within KRAB domain-containing zinc finger (ZNF) genes.

Integration into certain genomic sites may help reservoir cells persist following clonal expansion

Huang et al JEM 2021 PMID 34636876

Integration site influences the likelihood of persistence

In Elite Controllers, clonally expanded proviruses tend to be integrated into transcriptionally inactive regions (*e.g.* centromeric satellite DNA)

Integration site influences the likelihood of persistence

In Elite Controllers, clonally expanded proviruses tend to be integrated into transcriptionally inactive regions (*e.g.* centromeric satellite DNA)

This is not because HIV preferentially integrates into these regions.

It is because their immune systems eliminate cells with proviruses integrated into more transcriptionally active regions.

Jiang et al, Nature 2020 PMID 32848246

Cell type matters

CD4+ T-cell subsets differ in the degree of clonal expansion

Effector memory cells are enriched in clonally expanded proviral sequences^{1,2,3}

¹Hiener et al 2017 PMID 29045846; ²De Scheerder el al 2019 PMID 31471273; ³Jones et al 2020 PMID 31776273

CD4+ T-cell subsets differ in the degree of clonal expansion

Effector memory cells are enriched in clonally expanded proviral sequences^{1,2,3}

¹Hiener et al 2017 PMID 29045846; ²De Scheerder el al 2019 PMID 31471273; ³Jones et al 2020 PMID 31776273

Macrophages as distinctive reservoirs

Found in all tissues¹⁻⁴

Long-lived; relatively resistant to immune and HIVmediated killing⁵; reside in sites with reduced ART penetration (*e.g.* CNS).

These properties can yield genetically distinctive proviral populations in certain tissues⁶

¹Micci et al 2014 PMID 25356757; ²DiNapoli et al 2017 PMID 28239657; ³Honeycutt et al 2017 PMID 28414330; ⁴Ganor et al 2019 PMID 30718846; ⁵Clayton et al 2018 PMID 29670239; ⁶Schnell et al 2009 PMID 19390619; ⁶Schnell et al 2009 PMID 19390619

How (genetically) distinctive are reservoirs in different tissues?

- Proviral diversity in blood is generally representative of that in tissues, and genetic
- compartmentalization in tissue is generally limited.

Tissue

- Blood/PBMC
- Gastrointestinal tract
- Liver
- Lymphatic tissue
- CNS
- Pancreas
- Heart
- Genito-urinary tract

IC_{50} to various nAbs

How (genetically) distinctive are reservoirs in different tissues?

- Proviral diversity in blood is generally representative of that in tissues, and genetic compartmentalization in tissue is generally limited.
- BUT some tissues may harbor proviral populations with distinctive genetic and functional features (*e.g.* the brain).

Tissue

- Blood/PBMC
- Gastrointestinal tract
- Liver
- Lymphatic tissue
- CNS
- Pancreas
- Heart
- Genito-urinary tract

IC_{50} to various nAbs

Wang et al, Clin Infect Dis 2022 PMID 35234862

Methods innovation:

single-cell reservoir profiling

HIV SORT-seq 96 5' HIV 96 3' HIV RNA probes 96 3' HIV RNA probes 96 3' HIV RNA probes sort of the sort of the

HIV STIP-seq

- Intact, replication-competent HIV proviruses persist throughout the body during ART, and represent the main barrier to cure
- Clonal expansion is a major mechanism that sustains the reservoir
- A provirus' location (genomic, cellular, tissue) can influence its ability to persist
- Methods for reservoir characterization continue to be innovated

Acknowledgements

Most of all, thank-you to the participants in research.

Without you, research would not be possible