Introduction

Hypothesis:

CD4+ memory T cells expressing HLA-DR contribute to HIV persistence during prolonged ART.

Aims:

1. Measure the levels of HIV-1 RNA and DNA in CD4+ memory T cells expressing HLA-DR.
2. Determine the cellular mechanisms driving stable HIV reservoir using phylogenetic markers.
3. Determine the HIV genetic similarity between CD4+ memory T cells expressing HLA-DR and other memory T cell subsets.

Methods

Results

Conclusions

We acknowledge with gratitude the participants of this study.

Acknowledgement

1. The Westmead Institute for Medical Research, Westmead, Australia;
2. University of Sydney, Sydney Medical School, Sydney, Australia;
3. Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, United States;
4. Leidos Biomedical Research, INC, Frederick National Laboratory for Cancer Research, Frederick, United States;
5. Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, United States;
6. Department of microbiology, infection and immunology, Université de Montréal, Montreal, Canada;
7. Department of Medicine, University of California San Francisco, San Francisco, United States.