Targeting PD-1 Co-Inhibitory Pathway for Functional Cure of HIV/AIDS

Rama Amara
Department of Microbiology and Immunology
Emory Vaccine Center
Yerkes National Primate Research Center
Emory University, Atlanta, GA USA
COI Statement

I am a co-inventor of PD-1 technology that has been licensed to Genentech by the Emory University
High Levels of PD-1 Expression on Anti-viral CD8 T cells During Chronic Infections Regulates T Cell Exhaustion

Chronic LCMV infection
Barber et al (Nature 2006)

High PD-1 on T cells
In vivo PD-1 Blockade
↑ T cell proliferation & function
↓ Viral replication

Chronic HIV infection
Day et al (Nature 2006)
Trautman et al (Nat Med 2006)

High PD-1 on T cells
In vitro PD-1 Blockade
↑ T cell proliferation & function

Chronic SIV infection
Velu et al (Nature 2009)

High PD-1 on T cells
In vivo PD-1 Blockade
↑ T cell proliferation & function
↓ Viral replication
PD-1+ CD4 T Cells Contribute to The Pool of Viral Reservoirs in HIV+ ART Treated Patients

HIV-infected humans

SIV-infected macaques

More recently in LNs by Banga, Perreau, Nat Med 2016
Targeting PD-1 Pathway for Functional Cure

(Current Model)

- Exhausted CD8 T cells
 - PD-1 blockade
 - Functional CD8 T cells

- Latent/Viral reservoirs
 - PD-1 blockade
 - Reactivation of Latent virus
 - Killing
 - Productively infected cells

- Activated B cells
 - PD-1 blockade
 - Enhanced Antibody Production

www.iasociety.org
Study Design
PD-1 Blockade Combined with ART

Phase I

- SIVmac251
- Time-point blockade Initiated:
 - αPD-1 Ab, 3mg/kg
 - 0 3 7 10 14 Days Post Blockade

- 24-30 weeks
- ART Suppression
- Saline

Phase II

- αPD-1 Ab, 10mg/kg

- Double αPD-1 Treated
 - N = 10

- 4 wks 4 wks 2 wks

- Single αPD-1 Treated
 - N = 5

- Saline

- Saline

- Saline

- Treatment Interruption (24 Weeks)

Anti-PD-1 antibody, IgG4, intravenous administration
Effects on CD4 and CD8 T cells
PD-1 Blockade induces Proliferation of T_{CM} CD4 T cells and CD8 T cells

Ki-67+ CD4 T_{CM}

Ki-67+ CD8

* Shows mean values

Days Post Anti-retroviral Treatment

Days Post Anti-retroviral Treatment

PD-1 Treated PI and PII
PD-1 Treated PII
Saline Treated
Increase in Proliferation and Function of GagCM9+ CD8 T cells during Phase I

No difference in the magnitude of GagCM9+ CD8 T cells
Increased polyfunctionality of SIV specific CD8 T cells in PD-1 Treated Macaques during Phase I

Stimulated with 1ug/mL of Gag, Env1, and Env2
Cumulative SIV specific response

Increase observed in IFN-γ+ SIV specific CD8 T cells as well

** p < 0.01
Enhanced Th17 Frequencies in the Gut of PD-1 Treated ART suppressed RM

Stimulated with PMA/ ionomycin (40ng/1ug; per mL)

Observed Increased Th17 Frequencies in the Blood for both Treatment Groups at Wk24 Post ART
Lower Density of Neutrophils in the Rectum of Double PD-1 Group

34 weeks post ART
Day of interruption

Jake Estes
Effects on Viremia
Enhanced Kinetics of Viral Suppression with PD-1 blockade and ART (Phase I)

αPD-1 Treated Phase I

Saline Treated Phase I

Plasma SIV RNA (Log_{10} copies/mL)

Days Post ART

Days Post ART
Enhanced Kinetics of Viral Suppression with PD-1 blockade and ART (Phase I)

Graphs:
- **Left Graph:**
 - X-axis: Days Post ART
 - Y-axis: Log_{10} copies/mL of Plasma SIV RNA
 - Anti-retroviral Treatment shaded
 - Data points indicate a decline in viral load over time, with * indicating statistical significance from a Mann-Whitney Test.

- **Right Graph:**
 - X-axis: Days to Viral Suppression
 - Y-axis: Percent Viremic
 - Two curves: αPD-1 and Control
 - Log Rank Mantel Cox Test, P = 0.01
Transient Increases in Plasma Viremia Following PD-1 Blockade Under ART

αPD-1 Treated Phase I and II

- Anti-retroviral treatment
- 10 mg/kg αPD-1

Saline Treated Phase I and II

- Anti-retroviral treatment
- Saline

<table>
<thead>
<tr>
<th>RM</th>
<th>Transient and Detectable Plasma Viremia during PD-1 Blockade under ART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weeks Post αPD-1 Blockade</td>
</tr>
<tr>
<td>RFF14</td>
<td>X</td>
</tr>
<tr>
<td>RYn14</td>
<td>X</td>
</tr>
<tr>
<td>RTa14</td>
<td>X</td>
</tr>
<tr>
<td>RJh14</td>
<td>X</td>
</tr>
<tr>
<td>RHp13</td>
<td></td>
</tr>
<tr>
<td>REn14</td>
<td></td>
</tr>
<tr>
<td>RJh14</td>
<td></td>
</tr>
<tr>
<td>RJi13</td>
<td></td>
</tr>
<tr>
<td>RUK13</td>
<td></td>
</tr>
<tr>
<td>RSg14</td>
<td></td>
</tr>
<tr>
<td>RFe14</td>
<td></td>
</tr>
</tbody>
</table>

- Limit of Detection 60 copies/mL of plasma
Live Imaging for SIV Env at 2 weeks after the 3rd PD-1 infusion under ART

- Single PD-1 <60
- Single PD-1 <60
- Double PD-1 585 copies
- ART Only <60

Francois Villinger
Phil Santangelo
GSEA of PD-1 treated group under ART D7 vs D0 of First PD-1 Ab Infusion

ISG Enrichment

NFAT_3PATHWAY Enrichment
Viral Set-points Post Treatment Interruption (Wk 8)

Pre ART vs Post ART Interruption

Fold Change in Set-point Post Blockade

Unpaired t-test
With Welch’s correction
Conclusions

• PD-1 blockade with the Initiation of ART (Phase I)
 – Induced proliferation of central memory CD4 T cells and total and SIV specific CD8 T cells
 – Enhanced the polyfunctionality of SIV specific CD8 T cells
 – Synergized with ART resulting in more rapid viral suppression
 – Enhanced Th17 frequencies in the rectal mucosa during ART

• PD-1 blockade administered during suppressive ART (Phase II)
 – Induced proliferation of CD4 and CD8 T cells
 – Induced transient increases in plasma viremia
 – lower set-point VL in anti-PD-1 treated RM

• PD-1 blockade in tandem with other therapeutic interventions and latency reversing drugs may provide additional benefit
Acknowledgements

Geetha Mylvaganam

Amara Lab Members
- Sakeenah Hicks
- Vijayakumar Velu
- Sailaja Gangadhara
- Tiffany Turner-Styles
- Smita Iyer
- Pradeep B. J Reddy
- Venkateswarlu Chamcha
- Anusmita Sahoo
- Andrew Jones
- Lynette Chea
- Mike Sabula

CFAR Virology Core
Benton Lawson
Melon Nega
Thomas Vanderford

CFAR Flow Cytometry Core
Kiran Gill
Barbara Cervasi

Yerkes Research Resources
- Stephanie Ehnert
- Chris Souder

Yerkes Genomics core
- Steve Bosinger
- Greg Thorp

- **Gilead**
 - Michael Miller
 - Romas Geleziunas

- **Grant Funding:** NIH R37 AI112787, P01 AI88575, U19 AI109633, YNPRC Base Grant P51 RR00165, Emory Center for AIDS research P30 AI050409

- **Tony Conley (Program Officer)**

- **Gordon Freeman** (Dana Farber Cancer Institute)
- **Rafi Ahmed** (Emory University)
- Francois Villinger
- Phil Santangelo (Georgia Tech)