HIV Persists in Colon and Blood CCR6+CD4+ T-Cells During Viral Suppressive ART

Université de Montréal, CRCHUM, IRCM, McGill University Health Centre, Montreal, Qc, Canada
The mastaba, House of eternity
Christo & Jeanne Claude

Fromentin R et al Plos Pathogens 2016
Mucosal Immunity and HIV Infection

HIV infection characterized by:

- Rapid and massive depletion of CD4+ T-cells from the gut-associated lymphoid tissues (GALT)
- Viral replication in memory CCR5+ T-cells from the GALT
- However, GALT CD4 T cells contribute for a large part to HIV reservoir

Ponte, Routy et al. Ebiomedicine 2016
The body’s second brain: Enteric nervous system > 100×10^6 neurons

Gut = Largest surface area (400m^2) to maximize digestion/absorption

Large surface in contact with the external environment: Microbiota & byproducts
Chemokine Receptor and Gut Homing of T-Cells

- The chemokine receptor CCR6 is a gut-homing molecule mediating migration of the cells into Peyer’s Patches where its ligand CCL20 is located.
- CCR6 identifies memory CD4+ T-cells with Th17 (CCR4+CCR6+) and Th1Th17 (CXCR3+CCR6+) polarization profiles.
- CCR6+ T cells express more CCR5 and post-entry HIV-permissiveness factors than their negative counterpart.
- Retinoic Acid (RA) is a vitamin A metabolite involved in gut-homing through the induction of CCR9 & α4β7.

Gosselin/Monteiro et al., J Immunol, 2010
Montiriro et al. J immunol 2011
Preferential HIV-DNA Integration in Memory CCR6+ T-Cells of Viremic Untreated HIV-Infected Patients

Gosselin/Monteiro et al., J Immunol, 2010

Rapid CCR6 T cell depletion in blood
Not restored by ART

RI: Recent infection, CI: Chronic infection

p=0.03
p=0.0001
ATRA Enhances HIV Permissiveness in Memory CCR6+ T-Cells in vitro

Monteiro et al., J Immunol, 2011

ATRA, all trans retinoic acid
Hypothesis and objectives

• **Hypothesis:** CCR6 is a marker for CD4+ T-cells that preferentially harbor replication-competent in ART-treated subjects

• **Objectives:**
 – To investigate the contribution of colon and blood CCR6+CD4+ T-cells to HIV persistence during ART
 – To assess the ability of ATRA to reactivate HIV reservoirs in CCR6+CD4+ T-cells
Clinical Parameters of Chronically Infected HIV-positive on ART

Table I. Clinical parameters of CI on ART subjects

<table>
<thead>
<tr>
<th>Patient ID#</th>
<th>CD4 counts*</th>
<th>CD8 counts*</th>
<th>Time since infection&</th>
<th>ART regimen</th>
<th>Time of aviremia§</th>
</tr>
</thead>
<tbody>
<tr>
<td>B20</td>
<td>175</td>
<td>1100</td>
<td>231</td>
<td>DTG+ABC+3TC</td>
<td>26</td>
</tr>
<tr>
<td>B21</td>
<td>453</td>
<td>729</td>
<td>233</td>
<td>TDF+FTC/NVP</td>
<td>24</td>
</tr>
<tr>
<td>B22</td>
<td>677</td>
<td>1117</td>
<td>180</td>
<td>EFV/TDF+FTC</td>
<td>N/A</td>
</tr>
<tr>
<td>B23</td>
<td>895</td>
<td>1023</td>
<td>224</td>
<td>TDF+FTC/ATV/RTV</td>
<td>26</td>
</tr>
<tr>
<td>B24</td>
<td>314</td>
<td>793</td>
<td>244</td>
<td>DRV/ETR/DTG/RTV</td>
<td>72</td>
</tr>
<tr>
<td>B25</td>
<td>786</td>
<td>1813</td>
<td>240</td>
<td>RAL/TDF+FTC</td>
<td>ND</td>
</tr>
<tr>
<td>B26</td>
<td>679</td>
<td>691</td>
<td>244</td>
<td>TDF+FTC+EFV</td>
<td>120</td>
</tr>
<tr>
<td>B27</td>
<td>718</td>
<td>1079</td>
<td>305</td>
<td>DTG/ABC+3TC</td>
<td>96</td>
</tr>
<tr>
<td>B28</td>
<td>739</td>
<td>914</td>
<td>293</td>
<td>RAL/DRV/RTV/TDF+FTC</td>
<td>72</td>
</tr>
<tr>
<td>B29</td>
<td>513</td>
<td>1095</td>
<td>192</td>
<td>ABC+3TC/RAL</td>
<td>ND</td>
</tr>
<tr>
<td>B30</td>
<td>619</td>
<td>553</td>
<td>120</td>
<td>TDF+FTC+EFV</td>
<td>108</td>
</tr>
<tr>
<td>B31</td>
<td>814</td>
<td>774</td>
<td>48</td>
<td>TDF+FTC/RAL</td>
<td>43</td>
</tr>
<tr>
<td>B32</td>
<td>985</td>
<td>489</td>
<td>348</td>
<td>DTG+ABC+3TC</td>
<td>165</td>
</tr>
<tr>
<td>B33</td>
<td>288</td>
<td>407</td>
<td>209</td>
<td>EVG+COBI+TDF+FTC</td>
<td>ND</td>
</tr>
<tr>
<td>B34</td>
<td>690</td>
<td>574</td>
<td>116</td>
<td>DTG+ABC+3TC</td>
<td>113</td>
</tr>
<tr>
<td>EC1</td>
<td>753</td>
<td>812</td>
<td>258</td>
<td>Untreated</td>
<td>S.O.</td>
</tr>
<tr>
<td>ART#01a</td>
<td>535</td>
<td>304</td>
<td>180</td>
<td>NFV/TDF+FTC</td>
<td>25</td>
</tr>
<tr>
<td>ART#01b</td>
<td>433</td>
<td>240</td>
<td>180</td>
<td>NFV/TDF+FTC</td>
<td>32</td>
</tr>
<tr>
<td>ART#02</td>
<td>318</td>
<td>431</td>
<td>144</td>
<td>ABC+3TC/DLV</td>
<td>44</td>
</tr>
<tr>
<td>ART#03</td>
<td>543</td>
<td>787</td>
<td>216</td>
<td>DDC</td>
<td>72</td>
</tr>
<tr>
<td>ART#04</td>
<td>616</td>
<td>330</td>
<td>180</td>
<td>NFV/TDF+FTC</td>
<td>34</td>
</tr>
<tr>
<td>ART#05</td>
<td>651</td>
<td>409</td>
<td>72</td>
<td>AZT+3TC</td>
<td>46</td>
</tr>
<tr>
<td>ART#06</td>
<td>358</td>
<td>283</td>
<td>156</td>
<td>TDF+FTC+EFV</td>
<td>11</td>
</tr>
<tr>
<td>ART#07</td>
<td>748</td>
<td>694</td>
<td>156</td>
<td>TDF+FTC/ATV/RTV</td>
<td>11</td>
</tr>
<tr>
<td>ART#08</td>
<td>517</td>
<td>259</td>
<td>82</td>
<td>ABC+3TC/EFV</td>
<td>47</td>
</tr>
<tr>
<td>ART#09</td>
<td>269</td>
<td>282</td>
<td>96</td>
<td>EFV/TDF+FTC</td>
<td>N/A</td>
</tr>
<tr>
<td>ART#10</td>
<td>569</td>
<td>462</td>
<td>108</td>
<td>DRV/RAL</td>
<td>59</td>
</tr>
<tr>
<td>ART#11</td>
<td>391</td>
<td>620</td>
<td>165</td>
<td>ABC+3TC/DLV</td>
<td>71</td>
</tr>
<tr>
<td>ART#12</td>
<td>847</td>
<td>944</td>
<td>124</td>
<td>ATV/ABC+3TC</td>
<td>85</td>
</tr>
<tr>
<td>ART#13</td>
<td>498</td>
<td>531</td>
<td>150</td>
<td>DRV/RAL</td>
<td>N/A</td>
</tr>
<tr>
<td>ART#14</td>
<td>833</td>
<td>445</td>
<td>216</td>
<td>NFV/TDF+FTC</td>
<td>61</td>
</tr>
<tr>
<td>ART#15</td>
<td>886</td>
<td>579</td>
<td>60</td>
<td>TDF+FTC+EFV</td>
<td>50</td>
</tr>
<tr>
<td>ART#16</td>
<td>824</td>
<td>900</td>
<td>48</td>
<td>TDF+FTC+EFV</td>
<td>50</td>
</tr>
<tr>
<td>ART#17</td>
<td>617</td>
<td>1272</td>
<td>156</td>
<td>ABC+3TC/EFV</td>
<td>74</td>
</tr>
<tr>
<td>ART#18</td>
<td>776</td>
<td>478</td>
<td>288</td>
<td>TDF+FTC+EFV</td>
<td>75</td>
</tr>
<tr>
<td>ART#19</td>
<td>581</td>
<td>1060</td>
<td>96</td>
<td>EFV/TDF+FTC</td>
<td>N/A</td>
</tr>
</tbody>
</table>

#, plasma viral load in all patients <40 HIV-RNA copies/ml; *, cells/µl; &, months
Reduced Frequency of CCR6+CD4+ T-Cells in ART treated vs. Uninfected Individuals

Leukapheresis → PBMC → Phenotyping

CD4+ T-cells

CD4+CD45RA-

CD4+CD45RA-

EM/TM CCR6+
CM CCR6+

EM/TM CCR6-
CM CCR6-

CM CCR6-
Man-Whitney p<0.0001

CM CCR6+
Man-Whitney p=0.0078

EM/TM CCR6-
Man-Whitney, not significant

EM/TM CCR6+
Man-Whitney p=0.0001

Gosselin/Wiche Salinas et al. submitted
CCR6+ vs. CCR6- CM Subsets Harbor Superior Levels of Integrated HIV DNA in ART treated Individuals

PBMC
MACS purified CD4+ T-Cells
FACS purified Memory Subsets
Integrated HIV PCR

HIV-DNA integration in CCR6+/CCR6- subsets

HIV+ on ART (n=5)
Friedman p=0.0031
Contribution to HIV reservoir

ART-treated subjects (n=5)
Friedman p=0.033
Relative contribution to HIV reservoir

Gosselin/Wiche Salinas et al. submitted
Free-Cell Isolation from Colon Biopsies

• Challenges to overcome:
 – Small amount of material
 • Adaptation of the techniques
 – Surface marker loss due to enzymatic digestion
 • Use of Liberase DL
 • Specific antibody clones for epitopes that are less affected
 • O/N Resting to restore the expression
 • Work on fresh samples
 – Contamination by gut flora
 • Use of specific antibiotics (piperacillin/tazobactam)
Free-Cell Isolation from Colon Biopsies

- Technique:
 - Liberase DL Enzymatic Digestion
 - 3-4 Cycles of Mechanical Disruption using a Blunt-Ended Needle
 - Free-Cell isolation and washing
 - O/N Resting
 - Staining for Flow Cytometry
 - Cell Sorting
 - Total HIV PCR

N = 30 biopsies

Gosselin/Wiche Salinas et al. submitted
The Frequency of Memory CCR6+ T-Cells Is Enriched in the Colon of HIV+ on ART Individuals

A

All viable cells
Lineage- cells
CD3+ T-cells
CD4+CD45RA-

CD326
CD3
CD45RA
CD3

Frequency memory CCR6+ T-cells
Paired t-Test p=0.0013

PBMC
Colon

Sample ID
B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 EC1

(% of CD3+CD4+CD45RA-)

CCR6+ cells
Blood and Colon CCR6+ versus CCR6- T-Cells Are Preferentially Infected During ART

Blood

Gag HIV-DNA in blood CD4+ T-cells

Paired t-Test = 0.045

Colon

Gag HIV-DNA in colon CD4+ T-cells

Paired t-Test = 0.003

Gosselin/Wiche Salinas et al. submitted
Preferential Reactivation of HIV-1 Reservoirs in Blood CCR6+ T-Cells and enhanced by ATRA

Day 0
- MACS/FACS cell isolation
- TCR triggering ± ATRA (2x10^6 cells/well)

Day 3
- Harvest media
- Add IL-2 ± ATRA
- HIV-p24 ELISA

Day 6
- Harvest media
- Add IL-2 ± ATRA
- HIV-p24 ELISA

Day 9
- Harvest media and cells
- HIV-p34 ELISA
- HIV-p24 ICS

HIV reactivation: Day 9
- Friedman p=0.0004

- **intra cellular staining for p24**
 - TEM/TM: ART#19; Day 9

- **HIV reactivation: Day 9**
 - Friedman p=0.001

Total memory (CD45RA-); CM (CD45RA-CCR7+); EM/TM (CD45RA-CCR7-)

Gosselin/Wiche Salinas et al. submitted
In HIV-infected individuals receiving viral suppressive ART:

- CCR6 is a marker for memory TH17 CD4+ T-cells enriched in for replication-competent HIV-DNA in both colon and blood

- Blood CCR6+ vs CCR6- CM harbor superior levels of integrated HIV-DNA contributing the most to the pool of infected CM

- HIV reactivation was mainly detected in CCR6+ T-cells

- ATRA promotes HIV latency reversal in a TCR-dependent manner, suggesting an important contribution of the intestinal environment to viral replication and/or reactivation

HIV eradication strategies should target viral persistence in CCR6+CD4+ T-cells from various anatomic sites
Acknowledgements

CHUM-Research Centre
Petronela Ancuta
Annie Gosselin
Tomas Wiche Salinas
Delphine Planas, MSc
Vanessa Sue Wacleche, MSc
Amélie Cattin, MSc
Yuwei Zhang, PhD
Huicheng Chen, PhD
Sylvia Pouvreau

McGill University Health Centre
Vikram Mehraj, Peter Ghali, Josée Girouard

FRQ-S AIDS Network,
Mario Legault, Cecile Tremblay,
Mark Wainberg, Michel Roger

IRCM, CanCURE:
Eric Cohen, Sebastien Sebbagh

Volunteers for their gift of leukapheresis and gut biopsies

CanCURE:
Robert Reinhard