Cell-associated HIV-1 unspliced RNA level predicts both time to virological suppression and duration of post-treatment virological control in patients treated with temporary early ART

Alexander Pasternak

Laboratory of Experimental Virology, Department of Medical Microbiology
Academic Medical Center of the University of Amsterdam
Amsterdam, The Netherlands
No Treatment versus 24 or 60 Weeks of Antiretroviral Treatment during Primary HIV Infection: The Randomized Primo-SHM Trial

Marlous L. Grijsen1,2,3, Radjin Steingroover1,2,4, Ferdinand W. N. M. Wit2, Suzanne Jurriaans3, Annelies Verbon4, Kees Brinkman5, Marchina E. van der Ende6, Robin Soetekouw7, Frank de Wolf8, Joep M. A. Lange2, Hanneke Schuitemaker9, Jan M. Prins1, on behalf of the Primo-SHM Study Group

1 Department of Internal Medicine, Division of Infectious Diseases, Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 2 Department of Global Health, Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 3 Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 4 Department of Medical Microbiology, Maastricht University Medical Center, Maastricht, The Netherlands. 5 Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands. 6 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 7 Department of Internal Medicine, Kennemer Gasthuis, Haarlem, The Netherlands. 8 HIV Monitoring Foundation, Amsterdam, The Netherlands. 9 Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Cell-associated HIV nucleic acids were quantified in PBMC at PHI and every 12 weeks thereafter during early ART.
Time trends of cell-associated HIV nucleic acids on PHI ART

US RNA, \(\log_{10} \) copies/\(\mu \text{g total RNA} \)

V DNA, \(\log_{10} \) copies/10^6 PBMC
What determines the rate of virological suppression after ART initiation?

Plasma viral load, CD4+ count, CD4/CD8 ratio, unspliced RNA, multiply spliced RNA, and total viral DNA were measured at PHI.
In the multivariate Cox regression, US RNA at PHI was the only significant predictor of the time to virological suppression (HR=0.65 per 1 log_{10} increase in US RNA, 95% CI, 0.48-0.87, p=0.0043).
Early initiation of ART is one of the most promising strategies for HIV cure.

For the improved design of strategies towards HIV-1 functional cure, it is important to identify biomarkers that could predict the duration of post-treatment virological control (Visconti study, etc.).
What determines the rate of virological rebound after ART interruption?

Unspliced RNA, total viral DNA, and CD4+ count were measured before interruption of early ART.
Further exploration of US RNA as a predictor of post-treatment control in large-scale clinical trials aimed at HIV functional cure is warranted.

- US RNA:
 - p=0.021
 - Red: last US P ART low
 - Yellow: last US P ART high

- CD4+ count:
 - p=0.28
 - Red: last CD4 ART low
 - Yellow: last CD4 ART high

- V DNA:
 - p=0.35
 - Red: last VD P ART low
 - Yellow: last VD P ART high

- 24 weeks vs 60 weeks ART:
 - p=0.51
 - 24w
 - 60w
What determines the rate of disease progression (CD4+ T-cell loss) after interruption of early ART?

Plasma viral load, CD4+ count, CD4/CD8 ratio, unspliced RNA, multiply spliced RNA, and total viral DNA were measured at the virological setpoint (36 weeks after early ART interruption).
In the multivariate Cox regression analysis, CD4+ count (p=0.0004) and MS RNA level (p=0.011) were the only two significant predictors of disease progression.
Conclusions

Cell-associated HIV-1 unspliced RNA level independently predicted both time to virological suppression and time to virological rebound in patients treated with temporary early ART.

Cell-associated HIV-1 multiply spliced RNA level independently predicted disease progression (CD4+ T-cell loss) after interruption of early ART, while unspliced RNA was not predictive.

It looks like reactivation of HIV after therapy is interrupted and subsequent CD4+ T-cell loss are driven by different mechanisms.
We might be wrong…

HIV DNA: a marker of total reservoir (mostly defective)

Unspliced RNA: a marker of active reservoir (cells that produce virus or can become reactivated to do so upon latency reversal)

Multiply spliced RNA: a marker of “hyperactive reservoir” (cells with high MS RNA levels, a subset of active reservoir – the relative size of this “hyperactive reservoir” may drive HIV pathogenesis, determining the rate of CD4 T-cell loss)
Acknowledgements

Margreet Bakker
Suzanne Jurriaans
Ben Berkhout

Medical Microbiology,
AMC

Marlous Grijsen
Jan Prins

Infectious Diseases,
Tropical Medicine and
AIDS, AMC

This study was supported by the research grant 2011020 from the Dutch AIDS Fonds
Does any parameter predict normalization of CD4/CD8 ratio (>1) on early ART?
MS RNA was the only significant predictor of CD4:CD8 ratio normalization in multivariate logistic regression (p=0.015).