Frequent and ‘burst-like’ reactivation from latency in SIVmac239M infected macaques.

Mykola Pinkevych, Arnold Reynaldi², Christine Fennessey¹, Carolyn Reid¹, Priyanka Nadella¹, Leslie Lipkey¹, Laura Newman¹, Victor Ayala¹, Sumiti Jain¹, Gregory Del Prete¹, Jacob Estes¹, David Ott¹, Jeffrey Lifson¹, Claes Ohlen¹, Brandon Keele¹, Miles Davenport²

¹AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD.
²Kirby Institute for Infection and Immunity, University of New South Wales, Sydney Australia.
• No disclosures / COI.
Infection Analytics

Major questions.

• Frequency of reactivation from latency.
• How do we measure it?
• Early events in reactivation.
Measuring HIV reactivation from latency.

RESEARCH ARTICLE

HIV Reactivation from Latency after Treatment Interruption Occurs on Average Every 5-8 Days—Implications for HIV Remission

Mykola Pinkevych¹, Deborah Cromer¹, Martin Tolstrup², Andrew J. Grimm¹, David A. Cooper³, Sharon R. Lewin⁴,⁵, Ole S. Søgaard², Thomas A. Rasmussen², Stephen J. Kent⁶, Anthony D. Kelleher³, Miles P. Davenport¹*
Using time-to-detection after ATI

HIV reactivation from latency every 5-8 days (mean ≈ 6 days)

Using ‘reactivation founders’

\[R = \frac{V_0 e^{gt_1}}{V_0 e^{gt_2}} = e^{g\Delta} \]

- Viral load
- Delay between founders
- Detection threshold

\[g \]

\[\Delta \]
Delay between reactivation events at least 3.6 days (2.1-7.5)

Frequency of reactivation

Time-to-detection
- Affected by drug washout
- One reading.
- Low statistical power.

Reactivation founder ratio
- Not affected by washout.
- Multiple readings.
- ? Statistical power.

Disadvantages of reactivation founders:

• Need to identify individual founders.
 (need SGA)

• Accurate ratios require lots of sequences.
 (not easy with SGA)
Using $\text{SIV}_{\text{mac}239}\text{M}$ to study Latency

Brandon Keele and team

AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD.
Engineered SIVmac239M which Includes a 34bp Cassette for Variant Discrimination

SIVmac239

gag pol vif tat rev nef

MluI

...TAAACGCCTATG...
...ATTTGCGCATAAC...

Primer dimer

CGCGGGCTACNNNNNNNNNNTGCAAG
CCGATGNNNNNNNNNAAACGTTGCGC

CGCGCTTGAANNNNNNNNNNGAAGCTT
GAACGTTNNNNNNNNNNNNNNNNNNNNNNN

(+)

...TAAACCGCGGCTACNNNNNNNNNNTGCAAG
...ATTTGCGCGCCGATGNNNNNNNNNNAAACGTT

(-)

...TAAACCGCGCTTGCAANNNNNNNNNNGGATGCC
...ATTTGCGCGAAGCTTNNNNNNNNNNCCATCGGC

Adding these 34nt provides $4^{10} (>1,000,000)$ potential

Phylogenetic Analysis Distinguishes Individual Variants
High dose infection (2.2 x 10^5 IU of SIVmac239M i.v.)

Early treatment (day 6, TFV/FTC/RAL for 80 days)
(Day 4 TFV/FTC/IND/RTV for 300-480 days)

Analysis of ‘reactivation founders’.
(Illumina sequencing of plasma virus)
- Pre-treatment plasma virus very diverse
 (size of clonotypes weakly correlated with stock, Spearman 0.07-0.18)
Rx d6, for 82 days
- 33-63 reactivation founders
Rx d4, for 300-480 days
• 3-6 reactivation founders
Rx d6, for 82 days
- 33-63 reactivation founders
- 10-27 reactivations per day.

Rx d4, for 300-480 days
- 3-6 reactivation founders
- 0.38-0.7 reactivations / day.

ie: one every 1.4-2.6 days
What predicts reactivation rate?

- Time of treatment? (viral load pre-treatment)
- Duration of treatment?
Peak viral load pre-ART predicts reactivation rate

Duration of ART?

A

Rate/day

100

10

1

0.1

10^4 10^5 10^6 10^7

Max VL

B

Rate

0.8

0.6

0.4

0.2

0.0

300 375 480

Day 4 Rx

C

Rate per 10^6 cl/ml

10

8

6

4

2

0

82 300 375 480

All animals
Rate / VL
Detecting effects of interventions

Time-to-detection

- # patients with no rebound
 - time
Detecting effects of interventions

Time-to-detection

Ratio of founders

patients with no rebound

0 10 20 30 40 50

0 2 4 6 8 10

time

0.0 0.2 0.4 0.6 0.8

Rx day 4

reactivation rate

LRA (schematic)
Detecting effects of interventions

- Time-to-detection
- Reactivation rate*

* Based on the six day 4 Rx
Using $\text{SIV}_{\text{mac}239\text{M}}$ to study dynamics of early reactivation events
Duration of viral production

Reactivation 27 times per day. (lasts ≈1 day)
Rapid ‘burst-like’ viral production

- 0.1 days
- 0.5 days
- 2 days
Understanding reactivation from latency

SIV_{mac239M}

![Graph showing reactivation rate](image1)

Rx day 4

![Graph showing number of patients](image2)

Log ratio vs. Rebounder

Reduction in frequency of reactivation / size of reservoir (%)

![Schematic diagram](image3)
Acknowledgements

Infection Analytics Program:
Mykola Pinkevych
Deborah Cromer
Arnold Reynaldi
Vanessa Venturi

Frederick National Lab
Christine Fennessey
Carolyn Reid
Priyanka Nadella
Laura Newman
Leslie Lipkey
Sean O'Brien

Brandon Keele

Claes Ohlen
Victor Ayala
Sumiti Jain
Matt Trivett

Dave Ott
Lori Coren

Funding:
Australian Government
National Health and Medical Research Council

www.iasociety.org