The Role of B Cell Follicles in HIV Replication and Persistence

Elizabeth Connick, M.D.
Professor of Medicine
Chief, Division of Infectious Diseases
University of Arizona
July 17, 2016
Conflicts

Dr. Connick has served as a member of data monitoring committees for Sangamo Biosciences-sponsored clinical trials.
Most HIV Replication Occurs In Secondary Lymphoid Tissues

Lymph Node Structure

- Paracortex (EF)
- Follicle (F)
- Germinal Center (GC)
Two Patterns of HIV RNA are Found in Lymph Nodes

HIV RNA in situ+ (red); CD20 (white), FDC (green)

Intracellular HIV RNA In CD4+ Cells

Virions Bound to Follicular Dendritic Cells (FDC)

HIV Replication is Concentrated in CD4+ cells in B Cell Follicles

A CD4+ cell in F had a 31-fold (range, 6- to 155-fold) greater likelihood of being HIV RNA+ as a CD4+ cell in EF.

Are T Follicular Helper Cells (TFH) More Permissive to HIV than Other CD4+ T Cells?

Tonsil Infection with HIV GFP Reporter Virus

GFP Expression in Tonsil Subsets

% GFP+

MFI of GFP

GFP Expression in Sorted Tonsil Cell Subsets

GC TFH are highly permissive, but alter their phenotype during productive infection.

Why Are CTL Unable to Suppress HIV Replication in B Cell Follicles?

Hypothesis: B cell follicles are immune privileged sites.
CD8+ Cells and Many Antiviral Proteins Are Less Abundant in B-cell Follicles

HIV-1 seropositive subjects (N=15)

<table>
<thead>
<tr>
<th>Protein</th>
<th>Median Cells/mm² (range)</th>
<th>EF Median Cells/mm² (range)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-α</td>
<td>0.4 (0.0 - 40.4)</td>
<td>2.7 (0.4 – 29.0)</td>
<td>0.0186</td>
</tr>
<tr>
<td>α-Defensins 1, 2, 3</td>
<td>2.5 (1.4 - 12.4)</td>
<td>4.9 (0.8 - 8.5)</td>
<td>0.0127</td>
</tr>
<tr>
<td>RANTES</td>
<td>282 (63 – 1122)</td>
<td>1025 (213 – 3065)</td>
<td>0.0007</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>32 (6 - 132)</td>
<td>105 (21 – 577)</td>
<td>0.0054</td>
</tr>
<tr>
<td>MIP-1β</td>
<td>14 (0 – 299)</td>
<td>23 (9 -244)</td>
<td>0.4251</td>
</tr>
<tr>
<td>Interferon-γ</td>
<td>1.0 (0.0 – 21.0)</td>
<td>2.7 (0.7 – 25.6))</td>
<td>0.1257</td>
</tr>
<tr>
<td>Perforin</td>
<td>4.7 (1.1 – 30.5)</td>
<td>4.1 (1.0 - 21.8)</td>
<td>0.7736</td>
</tr>
<tr>
<td>Granzyme A</td>
<td>158 (15 – 444)</td>
<td>465 (39 – 1246)</td>
<td>0.0018</td>
</tr>
<tr>
<td>CD8</td>
<td>11.8 (3.1 – 32.5)</td>
<td>56.7 (32.8 - 72.3)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Are HIV-Specific CTL deficient in B cell follicles?

Dr. Pamela Skinner
CTL Fail to Accumulate in F of Untreated HIV+ Lymph Node

HLA-A*0201 gag

CD20

SIV RNA+ Cells Are More Frequent in F Compared to EF

SIV-Specific Tetramer Staining Cells Are Concentrated in EF

Red = Mamu B*08/Vif RL8 tetramer
Green = CD20 Blue = CD3

Frequencies of SIV RNA+ Cells in F and EF by Disease Stage

14 Day Acute

Chronic

S AIDS

F : EF GM 0.91 3.2 1.9
95% CI 0.66, 1.26 2.1, 4.9 1.1, 3.4

p = 0.99
p = 0.0001
p = 0.39
CD8 depletion largely abrogates the F concentration of SIV replication.

Few SIV-Specific CTL Exhibit a Follicular Homing Phenotype

Multiple factors promote HIV replication in B cell follicles:

- FDC-bound virions
- Heightened permissivity of TFH
- Paucity of CTL in B cell follicles
Increasing Evidence That B Cell Follicles are a Reservoir for HIV in Treated Disease

- **FDC Reservoir**

- **T Cell Reservoir**
Acknowledgments

Study Participants

University of Colorado
Joy Folkvord
Samantha MaWhinney
Martin McCarter
Mario Santiago
Brodie Miles
Shannon Miller
Amie Meditz
Alden Harken
Karen Whalen
Katie Lind
Tessa Arends

Wisconsin National Primate Research Center
Eva Rakasz
Nancy Wilson
David Watkins

University of Kansas
Edward Stephens

NYU Dental College
David Levy

University of MN
Pamela Skinner
Hyeon Kim
Reese Wagstaff
Hadia Mohamed
Nathan Kemp
Shengbin Li

Funding Agencies/Reagent Resources
NIH
Tetramer Core Facility
Nonhuman Primate Reagent Resource