Low but detectable IFN-γ responses against clade-matched HIV-1 peptides in early-treated vertically-infected children with long-term sustained viral suppression.

Hinatea Dieumegard1,2, Isael Fournat3,4, Fatima Kakkar4,5, Jason Brophy6, Lindsay Samson7, Michael Hawkes7, Stanley Read8, Ari Bitoun9, Hugo Soudre9,10 and the EPIC4 Study Group.

ACKNOWLEDGEMENT

1Unité d’immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada; 2Department of Microbiology, Infectiology & Immunology, Université de Montréal, QC, Canada; 3Division of Infectious Diseases, CHU Sainte-Justine, Montréal, QC, Canada; 4Centre maternel et infantile sur le SIDA (CMIS), Centre de recherche du CHU Sainte-Justine, Montréal, QC, Canada; 5Department of Pediatrics, Université de Montréal, QC, Canada; 6Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; 7University of Alberta, Edmonton, AL, Canada; 8Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

ABSTRACT

Absence of detectable cell-mediated immune responses to HIV-1 is a recurring finding in early-treated HIV-1 vertically-infected children in whom sustained viral suppression is achieved and maintained for an extended period. It has been assumed that levels of viral antigens were too low to trigger or maintain HIV-1-specific immune responses. However, reemergence of these responses following viral rebound is well documented. Here, IFN-γ responses were measured in peripheral blood mononuclear cells (PBMC) from 4 early-treated vertically-infected children with long-term sustained viral suppression (Bitoun et al., Clin Infect Dis 59: 1012-1019, 2014). PBMC were obtained from 4 children whose treatment on combination antiretroviral therapy (cART) was initiated within 72 hours of birth and sustained virologic suppression (HIV-1 viral load < 50 copies/mL) achieved. At the time of blood sampling, virologic suppression had been maintained for 3.9 to 8.1 years. IFN-γ production in response to HIV-1 clade-matched peptide pools (clade A [23 pools; 122 peptides] and clade C [22 pools; 121 peptides] consensus peptides) were measured using ELISpot. PBMC from HIV-uninfected subjects and a 29 year old HIV clade C-infected adult without sustained viral suppression (140,573 copies/mL) were used as controls. ELISpot positivity was defined according to standard criteria (>50 spot-forming units (SFU) per 10⁶ cells and >2 SD over negative controls). Results: Low-level HIV-specific IFN-γ responses were detected in all 4 children but not in HIV uninfected controls. Responses ranged from 0 SFU to 121 SFU/10⁶ PBMC in Case 1, 0 to 98 SFU/10⁶ PBMC in Case 2, 0 to 165 SFU/10⁶ PBMC in Case 3, and 0 to 98 SFU/10⁶ PBMC in Case 4, substantially lower than clade-matched IFN-γ responses measured in the control subject without long-term viral suppression (0-1858 SFU/10⁶ PBMC) and significantly lower than anti-CD3, CMV-specific and VZV-specific responses. Low but significant frequencies of cells producing IFN-γ in response to stimulation with HIV-1 clade-matched peptides were detected in early cART-treated children with sustained viral suppression under cART thereafter. These responses may be contributing to long-term control of HIV replication in vertically-infected children, and these dynamics of host-pathogen interaction may qualitatively or quantitatively differ from those observed in HIV-infected adults.

METHOD: ELISPOT PRINCIPLE

CONCLUSION

Our results indicate that four children who acquired HIV-1 infection by mother-to-child transmission, who were treated soon after birth with potent combination antiretroviral therapy, and in whom HIV-1 viral load remained undetectable in the long term actually developed cell-mediated immune responses directed against HIV. These IFN-γ responses were of comparatively low magnitude but were clearly detectable (i.e. above background) when HIV-1 clade-matched peptide panels were used in IFN-γ ELISpot. Further studies will be required to determine whether these responses contribute to the long-term control of HIV-1 replication, and whether the dynamics of host-pathogen interaction quantitatively and/or qualitatively differ in these children from responses observed in HIV-infected adults.

ACKNOWLEDGMENT

CHU SAINTE-JUSTINE
• Martine Caty
• Audrée Janelle-Montcalm
• Normand Lapointe
• Valérie Lamarré
• Cheryl Arsen
• Silvie Valois

CHILDREN’S HOSPITAL OF EASTERN ONTARIO
• Jennifer Bowes

HOSPITAL FOR SICK CHILDREN
• Cheryl Arsen