HIV-1 Reservoir Dynamics after Vaccination and Antiretroviral Therapy Interruption Are Driven by Dendritic Cell-Vaccine Induced T-Cell Responses

Cristina Andrés1, Montserrat Plana2, Alberto C. Guardo3, Carmen Alvarez-Fernández4, Nuria Climent4, Cristina Gil4, Teresa Gallán3, Agathe Lecl1, Bonaventura Clotet1, Brigitte Autran1, Nicolas Chomont4, Josep M Cao1, Sorayes Sánchez-Palomos1, Felipe García3 for DC-IMAN007-CRACS-03 study group.

1 AIDS Research Group, GMUPEU, KHV-007; Hospital Clinic, University of Barcelona, Barcelona, Spain. 2Hospital General, Reus. 3Hospital Clínic-IDIBAPS, Barcelona, Spain. 4CIDOB/CATIPER, Institute of Research in AIDS, UNESP-PR. PLoS ONE 10:e0134461. October 2015.

Goal

We present the results of a substudy of a dendritic cell based therapeutic vaccine. We assessed if the HIV-1 specific immune responses induced by the vaccine might have cleared some of the reservoir and drove the dynamics of replenishment of viral reservoir during cART interruption.

Introduction

We recently reported a peak decrease of viral set-point of 1.2 log10 associated with an increase in HIV-1-specific T cell responses in HIV infected individuals receiving autologous myeloid derived dendritic cells (MDDC) pulsed with autologous heat-inactivated whole HIV. Here we assessed if the HIV specific immune responses induced by the vaccine might have cleared some of the reservoir and drove the dynamics of replenishment of viral reservoir during the antiretroviral therapy (cART) interruption.

Material and Methods

We measured total and integrated HIV-1 DNA in isolated CD4 T cells in 36 patients on cART randomized to receive 3 immunizations with MDDC pulsed with autologous HIV-1 (n=24) (DC-HIV-1) or with non-pulsed MDDCs (n=12) (DC-control) at 6 time-points: before any cART, before STOP1 (a first cART interruption 56 weeks before the first immunization to isolate virus for pulsing MDDCs), before and after vaccinations (VAC1 and VAC2) and at weeks 12 and 48 after second interruption of cART.

Results

• Vaccinations did not influence HIV-1 DNA levels in vaccinated subjects.

• After cART interruption post-vaccination (week 12), while total HIV-1 DNA significantly increased in both vaccines (n=24) and controls (n=12), integrated HIV-1 DNA did not change in vaccines (1.8 to 1.9, p=0.22) and increased in controls (1.8 to 2.1, p=0.05) (p=0.03 for the difference between groups).

• HIV-1 specific T cells responses at VAC2 time-point were strongly and inversely correlated with total and integrated HIV-1 DNA after vaccination (r = 0.46, p=0.04 and r = -0.79, p<0.0001, respectively) and after cART interruption in vaccines (r = -0.69, p=0.002 and r = -0.82, p<0.0001, respectively), while a direct correlation was observed in DC-controls (r = 0.72, p=0.03 and r = 0.67, p=0.05 total and integrated HIV-1 DNA after vaccination, respectively) and no correlations were found after cART interruption.

• These associations were mainly observed with HIV-1 specific T cell responses targeting gag p24 and p17 and nef antigens.

Conclusion

HIV-1 specific T cell immune responses elicited by therapeutic DC vaccines could drive changes in viral reservoir after vaccination and the replenishment of reservoir after cART interruption in chronic HIV-1 infected patients treated at early stages.

Acknowledgements

This study was partially supported by grants: amfAR Grant # 108211-55- EKYL, FPT-HEALTH-2013-INNOVATION - Proposal No: 002570-2, SAF 2012-39075, FIS PI10/02984, FIS PS09/01297, FIS PI07/0291, FIS PI12/00960, Fondo Europeo para el Desarrollo Regional (FEDER), RIS**, DRACCS**.