Reversal of HIV-1 latency by CD4+ T-cell activation results in clonal expansion and sustained production of infectious virus in a subset of cells.

Background

1. **The major barrier to an HIV-1 cure is the latent reservoir**, which refers to stably suppressed HIV-infected donor cells that can lead to clonal expansion of proviruses rather than their elimination.
2. **The most effective latency reversing agents are also potent T-cell activators**.1,2
3. **Although rapid cell death is a common feature of activated HIV-infected T cells**, recent studies show that virus-producing cells can persist and expand in vivo.3,4
4. **The present study explores whether activation of CD4+ T-cells from chronically suppressed HIV-infected donors can lead to clonal expansion of proviruses rather than their elimination.**

Methods

- Experiments were performed in five chronically-suppressed HIV-1 infected individuals.
- Total CD4+ T-cells (tCD4) were isolated from large volume blood draw and stimulated with PMA/IONOMycin (50/100 ng/ml) between days 0-7 and days 21-28.
- Experiments were also performed with peripheral blood mononuclear cells (PBMC) in donors 2 and 5.
- Replication-competence of virions produced from total CD4+ T-cells in donor 2 was determined by the viral outgrowth assay.
- HIV-1 RNA in cell-free supernatants was quantified by qRT-PCR using the Amplicor COBAS TaqMan assay.
- HIV-1 cell-associated DNA (CAD) was quantified by in-house qPCR.
- Single Genome Sequencing (SGS) was performed to characterize proviruses and virion RNA.

Results

Table 1. Donor Clinical Characteristics.

<table>
<thead>
<tr>
<th>Donor</th>
<th>Age</th>
<th>Race</th>
<th>Gender</th>
<th>Years</th>
<th>Donor 1</th>
<th>Donor 2</th>
<th>Donor 3</th>
<th>Donor 4</th>
<th>Donor 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.0%</td>
<td></td>
<td></td>
<td>1.1%</td>
<td>2.2%</td>
<td>1.2%</td>
<td>4.4%</td>
<td>6.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2%</td>
<td></td>
<td></td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.9%</td>
<td></td>
<td></td>
<td>10.5%</td>
<td>10.5%</td>
<td>10.5%</td>
<td>10.5%</td>
<td>10.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7%</td>
<td></td>
<td></td>
<td>6.1%</td>
<td>6.1%</td>
<td>6.1%</td>
<td>6.1%</td>
<td>6.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.7%</td>
<td></td>
<td></td>
<td>18.7%</td>
<td>18.7%</td>
<td>18.7%</td>
<td>18.7%</td>
<td>18.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7%</td>
<td></td>
<td></td>
<td>3.7%</td>
<td>3.7%</td>
<td>3.7%</td>
<td>3.7%</td>
<td>3.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0%</td>
<td></td>
<td></td>
<td>16.7%</td>
<td>16.7%</td>
<td>16.7%</td>
<td>16.7%</td>
<td>16.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.2%</td>
<td></td>
<td></td>
<td>22.2%</td>
<td>22.2%</td>
<td>22.2%</td>
<td>22.2%</td>
<td>22.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.6%</td>
<td></td>
<td></td>
<td>80.0%</td>
<td>80.0%</td>
<td>80.0%</td>
<td>80.0%</td>
<td>80.0%</td>
</tr>
</tbody>
</table>

Conclusions

- **SGS reveals complex proviral dynamics after cell activation.**
- Many proviruses do not produce virus, consistent with the high frequency of defective proviral genomes.6
- A subset of proviruses show no virion production following repeat stimulation, suggesting death of cells containing that proviruses.
- New proviruses can be expressed with repeat stimulation, consistent with previous studies.6
- A subset of proviruses are expressed with both stimulations.
- Non-producing proviruses can proliferate.
- Double-producing proviruses can persist and proliferate, including those that are replication-competent.
- **Reversal of HIV-1 latency by CD4+ T cell activation results in multiple outcomes of proviruses, including clonal expansion of proviruses that can produce infectious virions.**
- These findings underscore the complexity of eliminating HIV reservoirs and the need for strategies to kill virus-producing cells before they can proliferate.

Acknowledgements

The authors thank the patient volunteers and University of Pittsburgh Medical School Faculty for their participation in this study and the National Cancer Institute.