Host cellular factors and latency

PE9
Transcriptional profiling identifies RORC and PPARG as two major mechanisms regulating HIV permissiveness in primary Th17 cells

Zhang Y.1,2, Planas D.1,2, Cleret-Buhot A.1,2, Goulet J.-P.3,4, Monteiro P.1,2, Gosselin A.1,2, Sue Wacleche V.1,2, Jenabian M.-A.5, Routy J.-P.6,7, Haddad E.8, Sekaly R.-P.9, Ancuta P.1,2
1CHUM-Research Centre, Montreal, Canada, 2Université de Montréal, Department of Microbiology, Infectiology and Immunology, Montreal, Canada, 3CARTaGENE, Université de Montréal, Montreal, Canada, 4Research Centre Ste-Justine Hospital, Montreal, Canada, 5Université du Québec à Montréal, Biological Sciences and BioMed Research Centre, Montreal, Canada, 6McGill University Health Center, Division of Hematology, Montreal, Canada, 7McGill University Health Centre, Chronic Viral Illness Service and Research Institute, Montreal, Canada, 8Vaccine and Gene Therapy Institute, Port St Lucie, United States, 9Case Western Reserve University, Cleveland, United States

Background: Th17 cells are major players in mucosal immunity. Th17 cells are highly permissive to HIV infection, while Th1 cells are relatively resistant. As a consequence, Th17 are depleted in HIV-infected subjects and their frequency is partially restored under antiretroviral therapy. Our recent studies demonstrated persistence of HIV reservoirs in CD4+ T-cells expressing the Th17 marker CCR6 in ART-treated subjects. To identify molecular mechanisms of HIV permissiveness in Th17 cells, we performed a genome-wide analysis of gene expression in Th17 vs. Th1 cells.

Methods: Th17 (CCR4+CXCR3-CCR6+) and Th1 (CCR4-CXCR3+CCR6-) subsets were sorted by flow cytometry and stimulated via CD3/CD28 Abs. The expression of 47,000 probe-sets was tested using the Illumina BeadArray technology. Transcripts were classified by biological functions using Gene Set Variation Analysis and Gene Ontology. Real-time RT-PCR and fluorescence microscopy were used to validate differential gene expression. RNA interference was used to evaluate the role of top-modulated genes in regulating HIV permissiveness. Cytokine production and proliferation was measured by flow cytometry. HIV infection-integration was quantified by HIV-p24 ELISA and nested real-time PCR.

Results: HIV permissiveness in Th17 vs. Th1 was regulated by both entry and post-entry mechanisms. Among 2,533 “present calls”, 1,335 and 1,198 probe-sets were upregulated and downregulated, respectively, in Th17 vs Th1 cells. Genes associated with T-cell differentiation (RORC, KLF2, ARNTL), TCR signaling (ZAP-70, Lck, MAP3K4), activation/apoptosis (PTPN13), and HIV replication (PPARG) were upregulated in Th17 vs. Th1 cells. Genes down regulated in Th17 vs. Th1 cells and previously linked to HIV resistance included CCR5-binding chemokines and IFN-induced molecules. HIV permissiveness in Th17 vs. Th1 cells was associated with high sensitivity to TCR triggering, increased proliferation potential, and superior NF-κB DNA-binding activity. RORC RNA interference decreased HIV replication, while PPARG silencing induced opposite effects.

Conclusions: Our study reveals a unique molecular signature for HIV-permissive Th17 cells and identifies RORC and PPARG as major positive and negative regulators, respectively, of HIV replication in these cells. Novel therapeutic strategies aimed at interfering with Th17-specific transcripts may limit HIV replication and reservoir persistence, while preserving the beneficial role of Th17 cells in mucosal immunity.