Reversal of HIV-1 latency by activation of patient-derived CD4+ T-cells results in clonal expansion and sustained production of infectious virus from a subset of cells

J. Bui1,2, E. Halvas1, E. Fyne1, M. Sobolewski1, D. Koontz1, M. Kearney3, W. Shao4, F. Hong1, J.W. Mellors1
1University of Pittsburgh, Department of Medicine, Pittsburgh, United States, 2Howard Hughes Medical Institute, Medical Research Fellows Program, Bethesda, United States, 3National Cancer Institute (NCI), HIV Dynamics and Replication Program, Frederick, United States, 4Leidos, Advanced Biomedical Computing Center, Frederick, United States

Background: The “kick-and-kill” strategy, consisting of latency reversal followed by death of cells with activated proviruses, has been proposed as a means of eliminating the HIV-1 reservoir. However, the most effective latency reversing agents are also potent T-cell activators (Cillo, PNAS 2014). Recent studies show that virus producing cells can persist and expand in vivo (Maldarelli, Science 2014). We hypothesized that activation of patient-derived CD4+ T-cells can lead to clonal expansion of proviruses rather than their elimination.

Methods: To study the effects of latency reversal by CD4+ T-cell activation on virus production and cell survival, we established an ex vivo cell culture system involving stimulation of patient-derived CD4+ T cells with PMA/ionomycin (day 1-7), followed by rest (day 7-21), and then restimulation (day 21-28) in the presence of raltegravir and efavirenz to block virus spread. Cell-associated HIV-1 DNA and virion RNA in the supernatant were quantified by qPCR at weekly intervals. Single genome sequencing (SGS) was performed to characterize proviruses and virion RNA. Replication-competence of virions produced was determined by co-culture with CD8-depleted blasts from HIV negative donors.

Results: Experiments were performed with purified CD4+ T-cells from 5 consecutive donors who had been suppressed on ART for 2 or more years (median = 13.4 years). In all experiments, HIV-1 RNA levels in supernatant increased following initial stimulation, decreased during the rest period, and increased again with restimulation. Cell-associated HIV-1 DNA levels did not show a consistent pattern of change. SGS revealed several different outcomes of cells containing specific proviruses: 1) virus production following the first but not the second stimulation; 2) virus production only following the second stimulation; 3) virus production following both stimulations; 4) no virus production with either stimulation, 5) proviral expansion without virus production; and importantly 6) proviral expansion with virus production, including replication-competent virus.

Conclusions: These results indicate that reversal of HIV-1 latency by CD4+ T cell activation results in multiple outcomes of proviral-containing cells including clonal expansion of proviruses that can produce infectious virions. These findings underscore the complexity of eliminating HIV reservoirs and the need for strategies to kill virus-producing cells before they can proliferate.