PE28

Universal Tre-recombinase (uTre) specifically targets the majority of primary HIV-1 isolates

Hauber I.1, Karpinski J.1, Schäfer C.1,2, Chemnitz J.1, Hofmann-Sieber H.1, van Lunzen J.1,4, Buchholz F.2, Hauber J.1,3
1Heinrich Pette Institute, Antiviral Strategies, Hamburg, Germany, 2TU Dresden, Medical Systems Biology, Dresden, Germany,
3German Center for Infection Research (DZIF), Hamburg, Germany, 4University Medical Center Hamburg-Eppendorf, Section Infectious Diseases, Hamburg, Germany

Background: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTR). To date, treatment regimens primarily target virus attachment, virus-cell fusion or the virus enzymes, but not the integrated provirus. Thus, current antiretroviral therapy (cART) cannot eradicate HIV-1, a fact that highlights the urgency of pursuing new strategies to find a cure for HIV/AIDS. Previously, we engineered an experimental HIV-1 LTR-specific recombinase (Tre-recombinase) that can efficiently excise integrated proviral DNA from infected human cell cultures. Subsequently, we demonstrated highly significant antiviral activity of this HIV-1 subtype A-specific Tre in humanized mice. Broad clinical application, however, requires availability of a Tre-recombinase that recognizes a majority of clinical HIV-1 isolates.

Methods: We employed substrate-linked protein evolution to engineer universal Tre-recombinase (uTre), recognizing the LTRs in a majority of clinical HIV-1 isolates (>94% of HIV-1 subtype A, B, and C). The activity of uTre was subsequently analyzed in cell lines and primary cell cultures, as well as in HIV-infected humanized mice.

Results: Here we demonstrate the absence of cytopathic and off-target effects, as well as pronounced antiviral uTre activity. In particular, uTre expression resulted in decline of viral loads below the detection limit (< 20 HIV-1 RNA copies/ml) in “personalized” mice, which were engrafted with CD4+ T cells from HIV-infected patients.

Conclusions: The presented data suggest that uTre technology may become a valuable component of future eradication strategies to reverse infection and thereby provide a cure for HIV/AIDS.