PE25
Minimal HIV-1 Gag epitope presentation in a T-cell line during reactivation

X.T. Kuang1, G. Anmole1, P. Mwimanzi2, M.A. Brockman1,2,3
1Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, Canada, 2Simon Fraser University, Health Sciences, Burnaby, Canada, 3BC Centre for Excellence in HIV/AIDS, Vancouver, Canada

Background: “Shock and kill” methods are being tested as a strategy to cure HIV infection. Various agents can reactivate latent provirus; however, immune-mediated killing of these cells appears to be inefficient. To investigate whether this is due in part to poor antigen presentation, we developed a reporter T cell assay to detect HIV epitopes on latent cells following reactivation.

Methods: A latent Jurkat-GFP (J-Lat) cell line stably expressing HLA-A*02+ was constructed and used as target cells. HIV was reactivated using anti-latency agents (TNFα and HDAC inhibitors). Enhancers of antigen processing (IFNγ and ATRA) were also tested. Effector T cells were generated by transfection of Jurkats with TCRα/β specific for the A*02-restricted Gag FK10 epitope, CD8α and NFAT-driven luciferase reporter plasmids. Reactivation of J-Lat cells was measured by assessing GFP and Gag-p24 expression using flow cytometry. Live GFP+ and GFP-negative target cells were collected by FACS and FK10 presentation on these cells was detected following co-culture with TCR+ effector cells as an increase in luciferase signal.

Results: Co-culture of FK10-pulsed J-Lat-A*02 targets with TCR+ effectors resulted in a dose-dependent increase in luciferase signal. Anti-latency agents reactivated ~5% to 40% of live J-Lat cells, versus TNFα (30%) and DMSO (0%), and expression of Gag-p24 correlated with higher GFP fluorescence. Despite robust Gag expression, no difference in TCR-driven luciferase signal was observed between GFP+ and GFP-negative J-Lat targets. Addition of IFNγ enhanced the ability of TNFα-treated J-Lat target cells to induce luciferase signal; and a further increase in signal was observed when IFNγ and all-trans retinoic acid (ATRA) were added in combination. However, these effects were not observed when HDACi-treated target cells were used.

Conclusions: These results indicate that J-Lat cells present endogenous viral peptides poorly, but this activity could be enhanced by IFNγ and ATRA. Lack of TCR-mediated stimulation by HDACi-treated target cells, even in the presence of IFNγ and ATRA, suggests that these drugs further impaired peptide presentation. Altered antigen presentation intrinsic to latent cells/cell lines or as a side-effect of anti-latency drugs should be considered as a potential barrier to HIV eradication.