PE23
CD40L-induced tunneling nanotube networks facilitate proinflammatory dendritic cell-mediated HIV-1 trans-infection of CD4+ T-cells

Zaccard C.1, Mailliard R.1, Rappocciolo G.1, Watkins S.2, Rinaldo C.1
1University of Pittsburgh, Infectious Diseases and Microbiology, Pittsburgh, United States, 2University of Pittsburgh, Cell Biology and Physiology, United States

Background: We have found that, in addition to their high IL-12p70 producing capacity, dendritic cells (DC) matured in the presence of acute inflammatory mediators are uniquely programmed to form intercellular networks of tunneling nanotubes, or ‘reticulate’, in response to T helper cell-associated CD40L. We also recently revealed a relationship between HIV-1 disease progression and trans-infection when we demonstrated that DC from HIV-1-infected non-progressors (NP) lack the ability to transmit virus to CD4+ T cells due to a paucity of cellular cholesterol. Here we investigate a relationship between inducible nanotube formation, which also requires the presence of cholesterol-rich lipid rafts, DC-mediated trans-infection, and HIV-1 disease progression.

[DC nanotubes support cell-to-cell HIV-1 transfer]
**Methods:** DC were generated using monocytes isolated from HIV-1 seronegative donors or NP from the Multicenter AIDS Cohort Study. NP displayed stable CD4+ T cell counts in the absence of antiretroviral drug therapy over many years of HIV-1 infection. Differential polarization of DC was achieved by exposure to an IFN-γ- or PGE2-containing cocktail to mimic a setting of acute or chronic inflammation, respectively. We treated DC types with CD40L or media, and quantitatively assessed morphological alterations using live-cell confocal microscopy and 3D imaging analysis software. The ability of DC types to transmit virus to CD4+ T cells was determined using our trans-infection model, followed by intracellular HIV-1 core antigen staining and flow cytometry.

**Results:** We determined that CD40L-induced reticulation increases the surface area and spatial reach of proinflammatory DC, facilitating intercellular trafficking of antigens as well as HIV-1 for amplification of virus transmission. Moreover, IFN-γ-programmed DC display a superior capacity to mediate HIV-1 trans-infection of CD4+ T cells compared to PGE2-programmed DC, which is further enhanced by the addition of soluble CD40L. Importantly, IFN-γ-programmed DC generated from NP display a dramatically reduced ability to reticulate in response to CD40L, which coincides with their failure to effectively mediate HIV-1 trans-infection of CD4+ T cells.

**Conclusions:** The link between inhibited disease progression in HIV-1-infected NP and the inability of their proinflammatory DC to reticulate and trans-infect CD4+ T cells provides a rationale for further exploration of therapeutic strategies to target this immune process and potentially control HIV-1 disease progression.