Reverse transcription and integration

PE1

Primary resistance against dolutegravir decreases HIV integration

Mesplède T., Anstett K., Osman N., Hassounah S., Liang J., Han Y., Wainberg M.
McGill University AIDS Centre, Lady Davis Institute for Medical Research - Jewish General Hospital, Montréal, Canada

Background: Dolutegravir is an integrase inhibitor that has shown a high genetic barrier against the emergence of resistant strains. No resistance substitution has been observed in treatment-naïve individuals treated with this drug. In tissue culture experiments, we have identified the R263K resistance substitution as a signature substitution for HIV resistance against dolutegravir, an observation that was later confirmed in highly treatment-experienced individuals. Given the importance of DNA integration in the establishment of HIV persistence, we tested the ability of dolutegravir-resistant HIV strains to integrate within human DNA.

Methods: We used an Alu-mediated quantitative PCR to measure levels of integration of dolutegravir-resistant variants in primary human PBMCs. Levels of integration were normalized using the b-actin gene. These experiments were performed using subtype B and C viruses.

Results: Our results show that dolutegravir-resistant variants are impaired in their ability to integrate within human DNA. The integration levels of subtype B and C R263K variants were decreased by 30% and 40% compared to WT viruses, respectively. More important, the addition of several secondary substitutions failed to restore integration to a level comparable to WT and, in some cases, further lowered integration to only 20% of WT.

Conclusions: The relative inability of dolutegravir-resistant variants to integrate within human DNA may contribute to a progressive decrease in the viral reservoir of individuals who develop these substitutions.

Under embargo until 11.00 on 21 July 2015