Distinct HIV Genetic Populations in Effector Memory T Cells after Prolonged Therapy
Questions about long-lived HIV reservoirs

Effective ART

Effect of very prolonged ART (>15 years) on the genetic composition of HIV-DNA?

Memory CD4+ T cell subsets

Full stimulation

HIV transcripts

Active viral transcription

Relationship between the genetic composition of HIV-DNA and the level of HIV-RNA transcripts?
Method Overview

UCSF:
- 6 Participants on very prolonged ART >15 years:
 - 4 initiated ART during chronic infection (PT1-4)
 - 2 initiated ART during early infection (PT5-6)

Leukapheresis

Rectal biopsies

VGTI:
- CD4+ Naïve T cells (T_N)
- CD4+ Stem Cell Memory T cells (T_{SCM})
- CD4+ Central memory T cells (T_{CM})
- CD4+ Transitional memory T cells (T_{TM})
- CD4+ Effector memory T cells (T_{EM})

CD4+ Homing subsets:
- CXCR5+CCR6- (X5+R6-)
- CXCR5-CCR6+ (X5+R6+)
- CXCR5+CCR6- (X5-R6-)

TILDA (tat/rev induced limiting dilution assay)

WMI:
- DNA sequencing by Single-Proviral Sequencing
 - Gag-pol ($p6$-RT) sequences

CD4+ T cells
CD8+ T cells
CD3- T cells
CD4-CD8- T cells
TEM contains clonal HIV-DNA

Overall % clonal HIV-DNA

TEM was highly enriched with clonally expanded identical HIV-DNA when compared to other cellular subsets

Overall of 40-66% clonally expanded HIV-DNA in participants treated during chronic infection

*Only one sequence; Likelihood p values: *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001*
2 Mechanisms of Cellular Proliferation

Memory CD4+ T cell

Antigen specific response

Large phylogenetic group containing clonally expanded HIV-DNA

Stable pool of CD4+ memory T cells

IL-7 IL-2

Small phylogenetic groups containing clonally expanded HIV-DNA
Cellular proliferation by homeostatic response
Effector memory contain 82% clonal hypermutated HIV-DNA

TEM contained 82% clonal hypermutants

100% Hypermutants in T_{EM}

T_{EM} contained 82% clonal hypermutants
Effector memory contain 92% clonal wild-type HIV-DNA.
Effector memory contain 51% clonal drug resistant HIV-DNA

Leukapheresis

- Leuka T_N
- Leuka T_SCM
- Leuka T_CCM
- Leuka T_TM
- Leuka T_EM

Homing

- Leuka DN (X5-R6-)
- Leuka R6+
- Leuka X5+
- Leuka DP (X5+R6+)

Gut

- Ileum CD4+
- Rectum CD4+

51% HIV-DNA in T_EM clonal HIV-DNA carrying DRMs

Likelihood p values: *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001

† Only one sequence
Enrichment of hypermutants in T_{EM} (treatment during early infection)

Overall

PT5

PT6

% Diversity = 2.5%

% Diversity = 0.07%

Diversity = 0.07%
Inducible HIV transcripts in CD4+ memory subsets

TCM, TTM and TEM subsets derived from all participants produced multiply spliced HIV transcripts upon full stimulation.
Conclusions

- The distribution of HIV-1 genetic material among memory subsets varied dramatically across the cohort after prolonged ART.

- Clonal expansions of HIV-DNA can be driven by random antigen-driven cellular proliferation and/or homeostatic response.

- T_{EM} are marked by clonal expansions with distinctive HIV-DNA genetic populations which reflects cellular proliferation induced by antigen-specific response.

- Genetic analysis reveals that proliferative bursts can be attenuated by cellular restriction factors and/or by death of cells expressing replication competent virus.

- The amount of inducible viral transcripts is lower in T_{EM} from an individual with expanded hypermutant populations.
Acknowledgements

Palmer lab WMI: Centre for Virus Research/Karolinska
Associate Professor S. Palmer
K. Barton
J-S Eden
B. Hiener
S. von Stockenström
A. Winckelmann

WMI: Centre for Virus Research
Professor T. Cunningham
A. Harman
N. Nasr
M. Kim
K. Sandgren
Rachel, Kirstie, Ani, Naomi, Daisy, Abdullah, Joey

AGRF
Bhawana Nain and her team

VGTIFL/Montreal
N. Chomont
R. Fromentin

Department of Epidemiology and Biostatistics UCSF
P. Bacchetti

Leidos Biomedical Research Inc.
Frederick National Laboratory for Cancer Research
W. Shao

Immunology Laboratory, Vaccine Research Centre, NIH
E. Boritz
D. Douek

Department of Medicine UCSF
F. M. Hecht
S. G. Deeks
M. Somsouk
P. Hunt
D. Douek
E. Sinclair
P. Lewis
H. Hatano
L. Epling
M. Kilian
T. Ho
A. Tan
J. Custer
L. Loeb
R. Hoh
L. Poole

We acknowledge with gratitude the participants of this study