HBV Cure: Possible Lessons for HIV

Professor Stephen Locarnini
WHO Regional Reference Laboratory for Hepatitis B, Victorian Infectious Diseases Reference Laboratory, Doherty Institute
Melbourne, Victoria 3000, AUSTRALIA
Disclosure

<table>
<thead>
<tr>
<th></th>
<th>Gilead Sciences</th>
<th>Arrowhead Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting Fees</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Fees for Contract Research and/or Clinical Trials</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Outline of Presentation

1. Introduction
2. Barriers to Curing Chronic Hepatitis B
3. Overcoming the Barriers
 a) Virological
 b) Immunological
4. Challenges and Opportunities Ahead
Hepatitis B: Global Burden

- 240 - 350 million people living with CHB globally

- 786,000 attributable deaths from hepatitis B annually in 2010;
 1.3 million from viral hepatitis B & C collectively (GBD 2010)

- Viral hepatitis was the 9th ranked cause of human death;
 similar numbers of deaths to HIV, malaria and TB (GBD 2010)

- Without appropriate management, 15-25% of people with CHB will develop advanced liver disease &/or HCC

- Liver cancer is the 2nd most common cause of cancer death globally
 - GBD report 2013
Natural History

<table>
<thead>
<tr>
<th>Phase</th>
<th>Immunotolerance</th>
<th>Immunoelimination</th>
<th>Inactive</th>
<th>HBeAg-Negative CH-B</th>
<th>Occult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral Load (IU/ml)</td>
<td>>20,000</td>
<td>>20,000</td>
<td><2,000</td>
<td>>2,000</td>
<td></td>
</tr>
<tr>
<td>Years</td>
<td>0 10 20 30 40 50 60 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disease
- Minimal necroinflammatory activity
- Chronic hepatitis
- Inactive
- Cirrhosis/HCC
- Occult

Serology
- Anti-HBe
- HBeAg
- HBsAg

ALT level

HBV DNA level

IFN-α, LMV/LdT, ADV/TVF, ETV

THERAPY
Current Treatment Challenges and Why we Need a Cure

• if use low genetic barrier NUCs, drug resistance a serious problem
• in China, > 3 x 10^6 LAM-resistant cases
• long term therapy with NUCs (> 3 years) affects patient compliance and typically has little effect on HBsAg levels
• Peg-IFN has substantial toxicity, low (<20%) efficacy
• Cost: very few countries in high prevalence regions have reimbursement policies
• HBsAg-positivity poor prognosis
Importance of HBsAg Clearance/Seroconversion

- ↓ Hepatic decompensation
- ↓ HCC
- ↑ Survival
- ↓ Levels of cccDNA

- As close to cure as we can expect to achieve in chronic hepatitis B

Major Barriers to Curing CHB

- **Viral**
 - cccDNA
 - HBsAg

 Both unaffected by NUC therapy

- **Immunological**
 - T-cell exhaustion
 - emerging role of (inadequate) B-cell responses
Productive HBV Replication: cccDNA Pathway

1. RC DNA \rightarrow cccDNA
 - DNA repair
 - TDP-2

2. HBeAg (early protein)
 - synthesised from precore mRNA

Non-Productive HBV Replication: HBsAg (from Integrated DNA) Pathway
The cccDNA is a Minichromosome

Low Replication Phenotype
Quiescent or active
Medium to Low Viraemia

High Replication Phenotype
Transcriptionally Active
High Viraemia

HBV Minichromosomes and Chromatin Modelling

- **Relaxed Chromatin**
 - **Activation of Gene Expression**: Histone Acetylase (HAT)
 - transcription activation complex containing HATs
 - HATs acetylate lysine residues of the histone tails

- **Compacted Chromatin**
 - **Repression of Gene Expression**: Histone Deacetylases (HDAT)
 - transcription repression complex containing HDAC
 - HDACs deacetylate histone lysine tails

- **Conclusion**
 - acetylation status of HBV minichromosome (cccDNA-bound H3 & H4 histones) regulates HBV transcription/replication and is reflected in viral load

Pollicino, T. et al 2006. Gastroenterology;130:823

Haematologica. 2009;94(11):1618-22
HBV and Subviral (HBsAg) Particles

- HBsAg secreted in vast excess over virions (3-4 orders of magnitude)
- circulate in blood 100-400 μg/ml
- half-life is ?
- NUC therapy has minimal effect on HBsAg levels or its clearance
HBsAg as An Immune Regulator

• mounting evidence for HBsAg proteins playing a key role in HBV persistence
• can suppress both innate (TLR-2, TLR-9 and IFN-α) as well as adaptive (mDC) responses to infection
• “immuno competence” of host can affect HBsAg “set-points”
• co-existence of HBsAg and anti-HBs (include heterologous sub-type specificity)

HBsAg Major Neutralisation Domain

The major anti-HBs neutralisation domain contains major immunogenic epitopes located within **Loop1** (aa107-138) and **Loop2** (aa139-147).

The ‘a’ determinant is highly conformational, with a raft of **cysteine & proline** residues

HBsAg ‘a’ determinant topology and/or epitope availability influence the HBV **neutralisation phenotype**

Selective immune (anti-HBs) pressures can influence epitope availability and HBsAg profile (loss or gain of binding)

- **Potentially a predictive biomarker for HBsAg response on-treatment**
- developed a 19plex panel of anti-HBs mAbs covering HBsAg ‘a’ determinant and C-terminal domain (residues 99-226)
In a treatment naïve cohort of genotype A chronic hepatitis B (CHB) patients receiving tenofovir disoproxil fumarate (TDF) therapy (TF103 trial):

HBsAg clearance profile (CP)

HBsAg epitope pressure (reduced recognition) at *both* loop 1 **AND** loop 2 epitopes
- associated with HBsAg response/decline (>1log) and potentially HBsAg loss/seroconversion

HBsAg non-clearance (or escape) profile (NCP)

No change in HBsAg epitope profile, OR reduced epitope binding at *only* one loop
- associated with no HBsAg response/decline (<1log)

Conclusion/Findings

Significant association (p <0.02) between the development of a HBsAg CP and HBsAg Loss/Seroconversion [PPV 83%] by 48 weeks of treatment

Walsh, R et al (2015), submitted
Nucleic Acid-Based Approaches

<table>
<thead>
<tr>
<th>Name</th>
<th>Approach</th>
<th>Phase</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-520</td>
<td>RNAi</td>
<td>Ila</td>
<td>Arrowhead</td>
</tr>
<tr>
<td>TKM-HBV</td>
<td>RNAi</td>
<td>Preclinical</td>
<td>Tekmira/OnCore</td>
</tr>
<tr>
<td>ALN-HBV</td>
<td>RNAi</td>
<td>Preclinical</td>
<td>Alnylam</td>
</tr>
<tr>
<td>ddRNAi</td>
<td>DNA-directed RNA</td>
<td>Preclinical</td>
<td>Benitec/Biomics</td>
</tr>
<tr>
<td>Isis HBV</td>
<td>anti-sense</td>
<td></td>
<td>Isis/GSK</td>
</tr>
</tbody>
</table>
RNA Therapeutics can Reduce HBV RNAs and Protein Production

Differentiation from nucleos(t)ide reverse transcriptase inhibitors

Wooddell, CI et al 2013. *Molecular Therapy;*21(5):976-985
TKM-HBV: Targeting Multiple HBV Transcripts

- Design an anti-HBV RNAi Trigger ‘payload’ that is:
 - **Potent** - reduces viral protein production, especially HBsAg
 - **Universal** - effective against all genotypes

- All three triggers target the 2.1/2.4 kb sAg encoding mRNAs and also cleave 3.5 kb and 0.7 kb mRNA and pgRNA with potential for additional therapeutic benefit by reducing eAg, HBx, and core Ag

Kindly provided by Dr Mike Sofia & Dr Tom Frohlich
TKM-HBV: Reduction in Multiple HBV Markers

- deep reduction in HBsAg
- strong inhibition of HBeAg
- viral DNA and cccDNA are reduced by TKM-HBV

![Graph showing reduction in HBsAg, HBeAg, cccDNA, and HBV DNA over time.](image)

Kindly provided by Dr Mike Sofia & Dr Tom Frohlich (Tekmira/OnCore)

Arrowhead Research

- Achieved similar effects in HBV-infected chimpanzees

Lanford, RE 2013. Hepatology;58(S1):705A-730A
ARC-520 in CHB Patients

- Phase 2 multicenter, randomized, double-blind, placebo-controlled, dose-escalation study in HBsAg+ (>1000 IU/ml), HBeAg-neg CHB patients with viremia controlled on ETV
 - randomized 1:3 (placebo or ARC520) for up to 24 patients
- Single IV dose at 1, 2 and 3 mg/kg
- Safe, well-tolerated, no SAE’s or dose-limiting toxicities
- 1mg/kg group:
 - mean HBsAg nadir: -39% (-22 to -57)
 - mean HBsAg change on day 85: -31% (-14 to -39)
- 2mg/kg group:
 - mean HBsAg nadir: -51% (-46 to -59)
 - mean HBsAg change on day 85: -22% (range -7 to -40)
 - **Statistically significant difference vs placebo from days 3 to 43 post-dose**
- 3mg/kg group: Results not yet available

Yuen, MF et al 2014. Hepatology;60:1267A-1290A
Dynamic Polyconjugate (DPC) Technology for siRNA Delivery in vivo

- DPC polymer composition and physical characteristics
 - amphipathic peptide
 - peptide amines reversibly “masked” with CDM
 - slightly negatively charged

- cellular uptake of peptide is ligand-driven (N-acetyl galactosamine (NAG)) for hepatocytes

- siRNA is made liver tropic by attachment of lipophilic ligand (e.g. cholesterol)

- ↓ pH in endosomes drives peptide unmasking

- unmasked peptide disrupts endosomal membrane

- siRNA released to cytoplasm

Rozema, DB et al 2007. Proc Natl Acad Sci(USA);104:12982
Overcoming the Immunological Barriers

i. Role of Immune Regulatory Receptors

• in CHB, immune regulatory receptors (IRR) have been shown to be the key drivers of T-cell dysfunction [eg: PD-1]

 (Fisicaro, P et al 2010. Gasto;138:682-693.,

• blocking these inhibitory IRRs has the potential to restore T-cell function [eg: anti-PD-1/PD-L1]

ii. Follicular Helper T-Cells (Tfh)

• Tfh (CXCR5⁺ CD4⁺) under influence of IL-21 provide help to B-cells

• elevated serum IL-21 levels associated with HBeAg seroconversion (Ma, S-W et al 2012. J Hepatol;56:775-781)
Immunotherapy: Results Reported at AASLD 2014

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABX-2013</td>
<td>Therapeutic vaccine: HBsAg, HBcAg</td>
<td>Center for Genetic Engineering and Technology, Cuba AbiVax</td>
</tr>
<tr>
<td>GS-4774</td>
<td>Therapeutic vaccine: yeast based, express HBV S, X and core proteins</td>
<td>Gilead</td>
</tr>
<tr>
<td>GS-9620</td>
<td>Oral agonist of TLR-7</td>
<td>Gilead</td>
</tr>
<tr>
<td>DV-601</td>
<td>Therapeutic vaccine with recombinant HBsAg and HBcAg and adjuvant</td>
<td>Dynavax</td>
</tr>
</tbody>
</table>

Why have attempts at therapeutic vaccination failed?

- approaches not HBV-specific or target only 1 HBV epitope
- HBV replication and HBsAg production not shut down
- inappropriate selection of patients
GS-9620: Oral TLR-7 Agonist

- **TLR-7**
 - intracellular pathogen sensor
 - endolysosomal RNA
 - agonism induces anti-viral response via innate immune activation

- **GS-9620**
 - oral
 - nanomolar potency
 - selective (TLR-7 >>> TLR-8)
 - pharmacodynamic effects in mouse, cyno, chimp, human
 - efficacy in woodchuck model

GS-9620: Reduction in HBV DNA, and Serum HBsAg and HBeAg in Chimpanzee

Lanford, RE et al. 2013. Gastroenterol;144(7):1508-1517
Reverse T Cell Exhaustion by PD-1/PD-L1 Pathway Blockade

Exhausted

- Proliferation
- Cytokine secretion
- Cytotoxicity

Functional

- Proliferation
- IFN-γ, TNF-α, IL-2
- Cytotoxicity
In vivo PD-L1 Blockade Synergizes with Therapeutic Vaccination to Control WHV Replication.

Companies Developing the Anti-PD-1/Anti-PD-L1 Therapies
BMS, Merck & Co, Novartis, Roche, MedImmune

Stopping Treatment

APASL Recommendation to Stop Antiviral Treatment

In HBeAg-positive patients: when HBeAg seroconversion has developed > 6 months

In HBeAg-negative patients: when HBV DNA remaining undetectable for three separate occasions 6 months apart

- **Outcomes**
 - 25-50% develop viral relapse with hepatitis
 - up to 40% remain treatment free (SVR)
 - half of these lose HBsAg

- **Factors**
 - HBV DNA undetectable at stop
 - HBsAg < 100 IU/ml [low]
 - duration of AV therapy (4-5 years)

Liang, Y et al 2011. Aliment Pharacol Ther;34:344.
International Efforts to Cure CHB

- Coalition to Eradicate Viral Hepatitis from Asia-Pacific (CEVHAP): policy & advocacy
- ANRS – Collaborate Workshop *(Zeisel, MB et al 2015. GUT;0:1-13)*
- ICE-HBV - International Collaboration to Eradicate HBV (being modelled on IAS approach): viral and immunological targets
- Philanthropy – focused on vaccination
- Pharmaceutical Companies
 - post-HCV era
- Professional Societies (EASL, AASLD, APASL)
- Hepatitis B Foundation (USA): community engagement
Future Perspectives and Developments

• The goalposts are shifting
• The medium-term aim for the field is to achieve “cure”
 – HBsAg seroconversion
• New agents for CHB are starting to emerge
 – identification of a HBV-Receptor (NTCP) is paradigm shifting
 – improved delivery to the liver for molecular therapeutics now a reality

PALPABLE OPTIMISM
What Might a HBV Curative Regimen Look Like?

- **Potent NA**
 - Agent to prevent viral spread and cccDNA re-amplification

- **cccDNA Inhibitor**
 - Safe and selective agent to reduce or silence cccDNA

- **Immune Activator**
 - Agent(s) to activate specific antiviral immune responses or relieve repression/exhaustion of the system

- **HBV Antigen Inhibitor**
 - Agent(s) to block/inhibit the HBV life-cycle [entry, cell-spread, capsid assembly, HBx, HBeAg, HBsAg]