OA4-5 LB
A Novel Therapeutic HIV-1 Vaccine Trial in Patients under HAART

Tung F.1, Tung J.1, Pallikkuth S.2,3, Termini J. M.4, Gupta S.2, Babic D.3,5, Stevenson M.3,5, Pahwa S.2,3, Fischl M.3,5, Stone G. W.2,3
1GeneCure Biotechnologies, Peachtree Corners, United States, 2University of Miami, Microbiology and Immunology, Miami, United States, 3Miami Center for AIDS Research, Miami, United States, 4University of Miami, Pathology, Miami, United States, 5University of Miami, Medicine, Miami, United States

Background: HIV-1 specific cellular immunity plays an important role in controlling viral replication. In this first-in-human therapeutic vaccination study, a replication-defective HIV-1 vaccine (HIVAX™) was tested in HIV-1 infected subjects undergoing highly active antiretroviral therapy (HAART) to enhance anti-HIV immunity. The goal of this study is to control viral load and reduce the dependency and side effects of antivirals in HIV patients.

Methods: A010 is a randomized, placebo-controlled dose-escalation trial to evaluate the safety and the immunogenicity of two doses of a replication defective HIV-1 vaccine (HIVAX™) in subjects receiving stable HAART with HIV-1 RNA <50 copies/ml and CD4 cell count >500 cells/mm3. Immunogenicity was measured by interferon-γ ELISPOT and intracytoplasmic cytokine production assay during vaccination. Viral reservoir and immune activation associated with persistent viral infection were also measured during vaccination. Following the randomized placebo-controlled vaccination phase, subjects who received active vaccine and who meet eligibility undergo a 12-week analytical antiretroviral treatment interruption (ATI). Viral loads in plasma were measured by real-time PCR during study. Results of low dose vaccine are reported.

Results: HIVAX™ was well tolerated. Transient grade 1 to 2 (mild to moderate) injection site reactions occurred in 8 of 10 vaccinated participants. HIVAX™ was highly immunogenic in all vaccinated subjects. Proinflammatory cytokines (TNF-α, IL-6, IL-8, LTA, IL-15), Th1 cytokines (IL-12, IL-2, and IFN-γ), IL-4, LPS, and sCD163 were all significantly reduced in subjects following HIVAX™ vaccination. In contrast, cytokines associated with a Th2/Th17 response (IL-10, IL-5, IL-13, IL-17, and IL-23) did not significantly change following HIVAX™ vaccination. Median viral load (3·45 log10 copies/ml) at the end of 12-week treatment interruption in HIVAX™ vaccinated group was significant lower than two placebo groups of historical data (4·28 log10 and 4·86 log10 copies/ml). Furthermore, three vaccinated subjects extended ATI for up to 2 years and still maintained stable CD4 counts and low viral load.

Conclusions: HIVAX™ vaccine was generally safe, immunogenic and may be effective in controlling viral load during treatment interruption in HIV-1 subjects of trial cohort.