Oral Abstract Session 1: Pathways to establishing and maintaining HIV latency

OA1-1

CTLA-4-expressing memory CD4+ T-cells are critical contributors to SIV viral persistence

McGary C.1, Paganini S.1, Cervasi B.1, Yu X.2, Lichterfeld M.2, Silvestri G.1, Paiardini M.1
1Emory University, YNPRC, Atlanta, United States, 2Ragon Institute, Boston, United States

Background: Understanding the immunophenotype and anatomic location of latently infected cells represents a critical challenge in designing a cure for HIV. Among memory CD4+ T-cells, those expressing co-inhibitory receptors (Co-IRs) are strong candidates for being enriched in latent HIV, given their negative regulatory function and upregulation on T-cells following HIV infection. However, little is known regarding the dynamics of T-cells expressing multiple Co-IRs following suppressive ART and their contribution to the HIV/SIV reservoir, particularly in tissues.

Methods: We investigated the relationship between the level of Co-IR expression on memory CD4+ T-cells and their level of latent virus in 10 ART-treated, SIV-infected rhesus macaques (RMs). RMs initiated a 5-drug ART regimen 6-8 weeks after SIVmac251 infection, which was maintained until plasma viremia was < 60 copies/mL for at least 3 months. Blood and tissue levels of memory CD4+ T-cells expressing multiple Co-IR (PD-1, CTLA-4, TIM-3, 2B4, TIGIT) were longitudinally analyzed by flow cytometry. Memory CD4+Co-IR+ subsets were sorted twice during viral suppression based on their expression of PD-1, CTLA-4, and TIM-3, to quantify levels of cell-associated SIV-DNA and RNA.

Results: The majority of memory CD4+ T-cells from the blood, GI tract, lymph node, and spleen expressed multiple Co-IRs, specifically PD-1 and CTLA-4, and their frequencies remained stable or increased during SIV infection, even with suppressive ART. Following 1 month of viral suppression, both memory CTLA-4+(PD-1-) and PD-1+(CTLA-4-) CD4+ T-cells harbored significantly higher levels of SIV-DNA in the LN. Yet, after 3 months of suppression, only CTLA-4+ CD4+ T-cells, in the absence of other Co-IRs, were significantly enriched in SIV-DNA in the PBMCs, compared to Co-IR(-) cells, and in the LN, demonstrating the specific persistence of this virally infected subset. Furthermore, this subset did not express high levels of SIV-RNA, which suggests that these CTLA-4+ cells likely harbor latent SIV.

Conclusions: Despite comprising a small frequency of memory CD4+ T-cells, CTLA-4+ T-cells represent a novel subset of virally enriched cells that may critically contribute to persistence in ART-suppressed individuals. These findings highlight the benefit of therapeutically blocking both CTLA-4 and PD-1 to target a large fraction of the HIV reservoir.