The Immune Checkpoints PD-1, LAG-3 and TIGIT are Biomarkers of HIV Infected Cells During ART and Identify Distinct Cellular Reservoirs

Remi Fromentin, Wendy Bakeman, Mariam B Lawani, Gabriela Khoury, Elizabeth Sinclair, Frederick M. Hecht, Steven G. Deeks, Sharon R. Lewin, Jean-Pierre Routy, Rafick P. Sékaly, Nicolas Chomont
Identifying biomarkers of latently infected cells is of primary importance to specifically target and eliminate the persistent reservoir.

Approach: Combining the “Where” with the “How”

Where: HIV persists in discrete subsets of cells during ART

How: Mechanisms driving the establishment and persistence of the HIV reservoir

Biomarkers of latently infected cells could be:
- surrogate markers of higher susceptibility to HIV infection
- markers of persistence providing selective advantages (latency maintenance, immune escape, replenishment)
Why immune checkpoints (ICs) could be biomarkers for HIV persistence during ART?

- ICs, negative regulators of T cell activation, regulate T cell proliferation and cytokine production.

- Several of these molecules are associated with T cell dysfunction in chronic HIV infection (PD-1, CTLA-4, TIM-3, CD160).

- Immune dysregulations persist during ART (residual immune activation, incomplete CD4 T cell restoration, T cell dysfunction).

Chen L, Nat Rev Imm. 2013

Hatano et al, JID 2012; Kelley et al, CID 2009
By inhibiting T cell activation, negative regulators (Immune Checkpoints, ICs) may actively maintain viral latency and identify reservoir cells during ART.
Study population:
48 HIV infected subjects virally suppressed for at least 3 years with CD4>350 c/µL

Methods:
- Multiparametric flow cytometry analysis of the expression of 8 ICBs (PD-1, LAG-3, TIGIT, CTLA-4, BTLA, CD160, 2B4, TIM-3) in PBMCs
- Ultrasensitive qPCRs to measure the frequency of CD4 T cells harboring virological markers of HIV persistence

The frequency of CD4 T cells expressing PD-1, LAG-3 and TIGIT are positively correlated with the frequency of CD4 T cells harboring integrated HIV DNA during ART.
PD-1 identifies T_{CM} and T_{TM} CD4 T cells enriched in integrated HIV DNA.

The frequency of cells harboring integrated HIV DNA is significantly higher in PD-1 expressing T_{CM} and T_{TM} when compared to their PD-1 negative counterparts.
LAG-3 identifies T_{CM} and T_{TM} CD4 T cells enriched in integrated HIV DNA.

Differentiation

The frequency of cells harboring integrated HIV DNA is significantly higher in LAG-3 expressing T_{CM} and T_{TM} when compared to their LAG-3 negative counterparts.
TIGIT identifies T_{EM} CD4 T cells enriched in integrated HIV DNA.

The frequency of cells harboring integrated HIV DNA is significantly higher in TIGIT expressing T_{EM} when compared to their TIGIT negative counterparts.
Can we further enrich in the reservoir by combining multiple ICs?

Memory CD4 T cells expressing multiple ICs are highly enriched for integrated HIV DNA.
Is the virus carried by latently infected cells expressing ICs functional?

A Principle of “Tat/Rev Induced Limiting Dilution Assay” (TILDA)

Memory CD4 T cells expressing LAG-3 and/or PD-1 and/or TIGIT are highly enriched for inducible HIV latently infected cells.
1. **Biomarkers**

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>CM</th>
<th>TM</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAG-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIGIT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.

Altogether, our data suggest that blocking ICs may reactivate HIV from latency and paves the way for the development of novel strategies to cure HIV infection.
• VGTI Florida
 Wendy Bakeman
 Amanda McNulty
 Mariam B. Lawani
 Rafick-Pierre Sekaly
 Nicolas Chomont

• Burnet Institute
 Gabriela Khoury
 Sharon R. Lewin

• McGill University
 Jean-Pierre Routy

• Merck
 Daria Hazuda
 Mike Miller
 Richard J.O. Barnard
 Dan Gorman

The study participants