Destruction of the Residual Active HIV-1 Reservoir by Env-specific Immunotoxin

J. Victor Garcia-Martinez, Ph.D.
University of North Carolina, at Chapel Hill
Delivering Therapeutics to Residual Active HIV Reservoirs

Experimental Goal: To eliminate cellular reservoirs of HIV that continue to actively produce virus in tissue compartments despite suppression of plasma viremia with antiretroviral therapy.

Step 1: Study drug concentrations in vivo to identify antiretrovirals with good tissue penetration that are particularly well suited for inhibiting systemic virus production.

Step 2: Identification and in vitro testing of new strategies for killing or limiting the survival of cells that constitute the active reservoir.

Step 3: Use animal models to demonstrate proof-of-concept for these strategies.
Experimental Approach to Generate Bone Marrow/Thymus/Liver (BLT) Mice

CD34^+ Cells
Generation of HIV Latency in Humanized BLT Mice

Paul W. Denton, Rikke Olesen, Shailesh K. Choudhary, Nancy M. Archin, Angela Wahl, Michael D. Swanson, Morgan Chateau, Tomonori Nochi, John F. Krisko, Rae Ann Spagnuolo, David M. Margolis, and J. Victor Garcia

Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, and Departments of Microbiology and Immunology, and Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA, and Department of Infectious Diseases, Aarhus University Hospital, Sheiby, Denmark.
Approach

- Generate BLT mice
- Infect with HIV-1\textsubscript{JR-CSF}
- Administer ART
- Monitor HIV RNA plasma levels
- Measure drug concentrations in tissues and plasma
- Quantitate absolute numbers of productively infected cells
- Quantitate levels of viral RNA in tissues
Establishment of a drug regimen capable of inhibiting virus production in blood and tissues

HIV-1 JR-CSR, CCR5/T-cell tropic virus, daily single i.p. drug administration
Durable reduction of the number of vRNA+ cells occurs during ART

Exact log rank test
Viral RNA production during ART rapidly declines and then remains stable in all tissues.

Lowess and cubic regression models were fit using R v2.14.1
Delivering Therapeutics to Residual Active HIV Reservoirs

Experimental Goal: to eliminate cellular reservoirs of HIV that continue to actively produce virus in tissue compartments despite suppression of plasma viremia with antiretroviral therapy.

Step 1: Study drug concentrations in vivo to identify antiretrovirals that are particularly well suited for inhibiting virus production.

Step 2: Identification and in vitro testing of new strategies for killing or limiting the survival of cells that constitute the active reservoir.

Step 3: Use animal models to demonstrate proof-of-concept for these strategies.
Targeting Residual Active Reservoir During ART

Edward Berger and Ira Pastan

(adapted from Kreitman, et al. NEJM-2001)
Experimental Approach for Targeted Immunotoxin Destruction of HIV Infected Cells
Prospective, open-label, single center, dose escalation, efficacy and safety, phase I/II trial of 3B3-PE38 in HIV infected BLT mice undergoing ART

POLSCDEP3HIBUA
Effect of Env-specific Immunotoxin on the residual active reservoir

Mann-Whitney
Reduction of HIV RNA Levels Mediated by the Env-specific Immunotoxin

*B*Wilcoxon rank-sum
Destruction of HIV Infected Cells Mediated by the Env-specific Immunotoxin

*Exact log rank test
Summary

• ART efficiently reduces viral load in peripheral blood.

• After an initial rapid decline in peripheral and systemic RNA production HIV RNA levels are maintained at a significantly reduced level.

• 3B3-PE38 immunotoxin administration further reduced tissue RNA levels as much as 1,000-fold in individual tissues and systemically by 0.8 logs over ART alone.

• The mechanism of the reduced viral RNA levels is a loss of productively infected cells.
Experimental Platform for Targeted Destruction of HIV Infected Cells

Induction Therapy
Acknowledgments

Paul W. Denton¹
Julie M. Long¹
Rae Ann Spagnuolo¹
Nancie M. Archin¹
Shailesh K. Choudhary¹
Olivia D. Snyder¹
David M. Margolis¹
Steven W. Wietgrefe²
Katherine Perkey²
Ashley T. Haase²
Craig Sykes³
Kuo Yang³
Angela D. Kashuba³
Michael G. Hudgens⁴
Ira Pastan⁵
Edward A. Berger⁶

¹Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
²Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, USA
³Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
⁴Department of Biostatistics, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
⁵Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
⁶Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA