BIT225, a Novel Inhibitor of HIV-1 Release from HIV-1 Reservoirs of the Myeloid Lineage

- John Wilkinson -

Biotron Limited, Australia
BIT225
(N-[5-(1-Methyl-1H-pyrazol-4-yl)-napthalene-2- carbonyl]-guanidine)

• First-in-class drug targeting HIV-1 within cells of the myeloid lineage (selected as lead from ~250 compound library designed to target Vpu)

• Anti-HIV-1 activity in primary human CD14⁺ MDM assay:
 • >90% inhibition of HIV-1 release (RT & p24)
 • IC_{50} of $\approx 1.1 \pm 0.4 \text{ uM}$ TC_{50} of 212 uM

• Also active in DCs
• Targets Vpu ion channels, with no effect on HIV-2
• No effect on reverse transcription or on the RTase or protease enzymes
• Acts post-integration
• EM suggests defects in virion packaging/budding

• Good safety and PK profiles in preclinical toxicology studies and Phase 1 human trials

[Visualisation by EM of (A) DMSO (B) BIT225 treated cells]
Significant HIV-1 Reduction in Human Macrophages *in vitro* with BIT225

Chronic Kinetics

d14 infection & d21 BIT225 addition

Khoury et al., *Antimicrobial Agents and Chemotherapy*. 2009
CD14+ monocytes (~30%) are long lived cells with reports that once infected they can disseminate virus for 6 weeks \textit{in vitro} (Sharova \textit{et al} EMBO J 2005)

The minor CD16+ subset (5-10% of monocytes) are preferentially infected; higher CCR5 levels (Ellery \textit{et al} JI 2007)

Circulate in the blood for ~1 day before entering the tissue -> MØ

Important wrt transmission and seeding the tissues (brain)

HIV-1 can be isolated from monocytes (Wang \textit{et al} Plos One 2013), their HPC precursors (Carter \textit{et al} Nat Med 2010) and thought to contribute to viral persistence (Le Douce \textit{et al} Retrovirology 2010)

Treatment regimens fail to inhibit HIV-1 DNA persistence in monocytes (Sonza \textit{et al} AIDS 2001; Zhu \textit{et al} JV 2002; Llewellyn \textit{et al} JLB 2006) but they are not a major reservoir in elite suppressors (Spivak \textit{et al} JV 2011)
A Phase 1b/2a Trial with BIT225

BIT225-004, a Phase 1b/2a, Placebo-Controlled, Randomised Study of the Safety, Pharmacokinetics and Antiviral Activity of BIT225 in Patients with Human Immunodeficiency Virus-1 Infection

Robert Murphy, Winai Ratanasuwan and Ruengpung Sutthent
ACLIRES and Dept of Medicine, Siriraj Hospital, Bangkok, Thailand
Primary objective
The safety and tolerability of 400 mg of BIT225 BID compared with placebo in patients with HIV-1 infection that are antiretroviral therapy naïve

Secondary objectives
- The pharmacokinetics of 400 mg of BIT225 administered daily on day 1 & 10 and twice daily on days 2 - 9
- The antiviral activity of BIT225
- Evaluate BIT225 levels in cerebrospinal fluid at day 10 (optional day 9)

Study design
- A randomized, parallel, double-blind study of BIT225 in patients with HIV-1 infection that are antiretroviral therapy naïve
- Males and females, aged 18 to 65 years, with HIV-1 infection (viral load >5,000 copies/mL; CD4+ count >350 cells/mm³) and that are antiretroviral therapy naïve
- 14 patients receiving 400 mg BIT225 and 7 receiving placebo
In a study of only 10 days with a drug targeting cells of the myeloid lineage, dramatic decreases in HIV-1 viral load and concomitant increases in CD4+ T cell number are unlikely to be observed. Issues with access to macrophages

Aim: To determine the effect of BIT225 on the viral burden in circulating CD14+ monocytes in HIV-1+ individuals

Method: CD14+ monocytes were isolated with magnetic beads on days 0, 5, 10 and 20 and co-cultured with MT4 HIV-1- T cells for 25 days
Monocyte Co-Culture Assay

Placebo (n=7)

BIT225 Treated (n=12)

HIV-1 Replication (pg/200μL) vs. Time in Co-culture (days)

- Placebo (n=7)
- BIT225 Treated (n=12)

Legend:
- Day 0 Bleed
- Day 5 Bleed
- Day 10 Bleed
- Day 20 Bleed
Monocyte Co-Culture Assay
BIT225 Treated: High Viral Load n=6

Mann-Whitney p=

<table>
<thead>
<tr>
<th></th>
<th>0 v 5</th>
<th>0 v 10</th>
<th>0 v 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.25</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.31</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.42</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.28</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Day 0 Bleed
Day 5 Bleed
Day 10 Bleed
Day 20 Bleed
Monocyte Co-Culture Assay
BIT225 Treated: Low Viral Load n=6

HIV-1 Replication (pg/200μL)

Time in co-culture (days)

Day 0 Bleed
Day 5 Bleed
Day 10 Bleed
Day 20 Bleed
In Summary

- This study strengthens our previous findings *in vitro* and *ex vivo*, supporting the role for BIT225 as a novel drug targeting HIV-1 within the myeloid compartment.

- In those patients with high HIV-1\(^+\) viral loads, treatment with BIT225 for 10 days significantly reduced the amount of infectious HIV-1 within the circulating CD14\(^+\) monocyte population.

- Single Copy HIV-1 RT-PCR Analysis: For 21 patients at the 4 bleeds, RNA and DNA (in triplicate) has been isolated and stored for HIV RNA and HIV DNA analysis.

- By targeting these cells and preventing the (re)seeding of the reservoirs, is there a potential role for BIT225 in the eradication strategy?
Acknowledgements

Biotron Limited
Dr Michelle Miller
Dr Carolyn Luscombe
Dr Gary Ewart
Audrey Thomson
Bronwyn Williams
Craig Witherington
Gabriela Khoury

ACLIRE
Prof Rob Murphy
Dr Sven-Iver Lorenzen

Siriraj Hospital
Trial Participants
A/Prof Winai Ratanasuwan
Prof Ruengpung Sutthent
Nattaya Tanliang

Melbourne University
Dr Simon Crawford

HIVNAT
Dr Stephen Kerr

Poster: MOLBPE11