Comprehensive analysis of viral persistence and immune activation in lymph nodes of HIV-1 infected individuals during HAART

Jan van Lunzen
University Medical Center Hamburg-Eppendorf
Heinrich-Pette-Institut for Experimental Virology & Immunology
Germany
Some basics about lymph node structure
Viral replication & immunopathology in lymph nodes
Effects of HAART in lymph nodes
Persisting immune activation in aviremic patients
Aberrant immune responses in lymph nodes
Questions

- Where does the virus replicate within lymphoid tissues?
- What is the effect of HAART on viral replication and immunopathology in LN?
- How much immune activation persists?
- What are the consequences?
Lymph Node Pathology in HIV

HIV -

- Mantle zone
- CD4⁺ T cells
- CD8⁺ T cells
- FD cells
- GC

HIV +

- IgD⁺, IgM⁺
- Invagination of MZ
- B-cell sinus reaction
- Granulocytic infiltrates
- Proliferation of blood vessels
- Giant cell
- CD4⁻CD8⁺

Stellbrink & van Lunzen, Curr Opin Infect Dis 2001
Immunopathology in LN

- CD4+Ki-67+
- CD8+
Follicular hyperplasia, FDC-network intact

Follicular involution, FDC-network destroyed

Productive HIV Infection of FDC?

HIV-1 RNA in LN during HAART

van Lunzen J, Ruiz L et al., AIDS 1998
Persistence of HIV-1 structural proteins in the GC of patients under HAART

Popovic, M et al. (2005) Proc. Natl. Acad. Sci. USA 102, 14807-14812
Residual replication in non-proliferating and resting cells

a: HIV RNA$^+$ Ki-67$^-$ cell (non-proliferating)

b: HIV RNA$^+$ p27$^+$ cell (resting)
T cell proliferation in LN during HAART

van Lunzen J, et al., CROI 1999
CTL in Lymph Nodes and Blood

- Pre-Rx
- On Rx
- After TI

Graph showing SFC/Mill cells with bars for each condition:
- Pre-Rx: 29
- On Rx: 33
- After TI: 38

Results:
- p < 0.05
- p = 0.001

Altfeld M, van Lunzen J et al., J Clin Invest 2003
CTL frequency decreases during HAART in PB but not in LN.

Altfeld M, van Lunzen J et al., J Clin Invest 2003
Summary I

- HIV is a highly replicating virus even during clinical latency
- HIV mainly resides in lymphoid tissues and causes severe pathology in particular in GC`s
- HIV replication leads to hyperactivation of the immune system
- As a consequence T cell turnover is massively increased
- Regenerative capacity of the immune system gets exhausted
- Disbalance of consumption and renewal of T cells
- HAART partially restores pathology but fails to improve HIV specific immune responses
- Some degree of immune activation persists, antigen present for prolonged time on FDC
Tregs in HIV infection

Loss of CD4+ T cells

WHY?

- direct HIV-mediated killing
- chronic immune activation with high turnover of T cells
- beneficial?
Relative frequency of T_{regs} increases with disease progression

Schulze zur Wiesch et al., J Virol, 2011
Longitudinal analysis of Tregs before and after HAART

Viral load (copies/ml) CD4 count (copies/ml) Frequency of Tregs

Schulze zur Wiesch et al., J Virol, 2011
Increased proliferation of HIV-specific helper cells after depletion of T\(_{\text{regs}}\)
Higher relative T_{reg} frequencies in Lymph Nodes compared to PBMC
Expression of CD39 and CD73 on peripheral and LN T cells
Down-regulation of the 5’-Ectonucleotidase CD73 of CD8+ T cells correlates with immune activation and T cell exhaustion.
CD4 T_{FH} cells are critical for effective antibody responses

- Within the follicle
- Express CXCR5, PD1, ICOS
- Bcl6$^+$
- IL-21 (cardinal cytokine)

- B cell proliferation
- Antibody maturation (SHM)
- Class switching (CSR)
- Memory development
Infection rate of CD57+ and CD57- CD4+ T cells in PB and LN

Ratio of the viral loads: CD57+CD4+ T cells [%]/CD57− CD4+ T cells [%]

LN:
10.5 3.3 8.0 9.5 3.0

PBL:
0.3 2.2 <0.1 2.5 2.5

High frequency of T_{FH} (CXCR5+PD-1$^{\text{high}}$) cell subset in the lymph node

Lindqvist M. et al. accepted J Clin Invest 2012
IL-21 preferentially produced by T_{FH} cells

Lindqvist M. et al. accepted J Clin Invest 2012
Expansion of T_{FH} cells correlates with skewing of B cell subsets

Lindqvist M. et al. accepted J Clin Invest 2012
Hypersecretion of IgG is associated with BCL6 expression in T_{FH} cells

Lindqvist M. et al. accepted J Clin Invest 2012
• Accumulation of functionally impaired T_{regs} occurs in LN and may impair appropriate CTL responses

• GC derived T helper cells are the major cellular source of viral infection, infection rates LN$>>$PB

• HIV-specific T_{FH} cells are expanded in chronic infection

• Expansion of T_{FH} cells correlates with skewing of B cell subsets in chronic HIV infection

• Hypersecretion of IgG1 is associated with BCL6 expression in T_{FH} cells
Hypothesis Model

- Lymph node B cell follicle
- Germinal center
- TFH
- Plasma cell
- Memory B cell
- Germinal center B cell
- HIV viremia
- IL-21

B cell follicle
Lymph node
Loss of neutralizing Ab

Neutralizing V3-loop specific Ab

C1-01, C2-07, C2-13

Cutoff

1986, 1992

Cutoff

1988, 1993

Conclusions I

• HIV pathology is driven by viral replication and hyperactivation of the immune system in lymphoid tissue (GC`s primarily involved)

• Viral replication is rapidly controlled by HAART in LN but some replication is persisting in resting and non-proliferating CD4 T cells in GC.

• The persistence of HIV structural proteins within GC may lead to chronic persisting immune activation even in the absence of viral replication
Conclusions II

- Abnormalities in T_{reg} frequencies and function is primarily found in LN.

- Malfunction of T_{regs} is associated with altered expression of ectonucleotidases (CD39, CD73).

- HIV-specific T_{FH} cells are expanded in chronic infection and are associated with skewing of B cell subsets.

- GC of LN are major sources for viral persistence and immune activation during successful HAART.
Acknowledgements

Heinrich-Pette-Institute for Experimental Virology and Immunology
Joachim Hauber
Ilona Hauber

Hannover Medical School
Dirk Meyer-Olson
Phillip Keudel

Universität zu Köln
Cologne Medical School
Gerd Fätkenheuer
Clara Lehmann

Adriana Thomssen
Julian Schulze zur Wiesch
Klara Tenner Racz
Paul Racz
Philip Hartjen
Kristina Colberg
Silke Kummer

Ragon Institute at MIT, MGH & Harvard
Hendrick Streeck
Marcus Altfeld
Madeleine Lindqvist
Galit Alter
Expression of CD73 on T cells is higher in the lymph nodes than in the peripheral blood.