T Memory Stem Cells: A Long-term Reservoir for HIV-1

Maria J Buzon, PhD

Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Boston, MA, US
A well accepted mechanism of HIV persistence is the stable infection of resting long-lived memory cells.

They decay very slowly with an average half-live of 44 months (Silicano et al; Nat Med 2003).

Major cellular reservoirs for HIV (Chomont et al; Nat Med 2009):
- Central Memory cells (CM)
- Transitional Memory cells (TM)

However, some evidences suggest the presence of other cellular reservoirs (Bailey et al; 2006 J Virol).
Identification of T Stem Cells Memory (T_{SCM})

- T_{SCM} represent a recently-discovered subpopulation of T cells that persist for extremely long periods of time.

A human memory T cell subset with stem cell-like properties

Luca Gattinoni1,9, Enrico Lugli2,9, Yun Ji1, Zoltan Pos3,4, Chrystal M Paulos5,6, Máire F Quigley7,8, Jorge R Almeida8, Emma Gostick7, Zhiya Yu1, Carmine Carpenito5,6, Ena Wang3,4, Daniel C Douek8, David A Price7,8, Carl H June5,6, Francesco M Marincola3,4, Mario Roederer2,9 & Nicholas P Restifo1,9

- Phenotypic markers are available to identify this new subset (CD45RA, CCR7, CD62L, CD28, CD27, CD127, CD122, CD95)
Due to their extremely long half-live and self-renewal capacity, T_{SCM} might be a key reservoir for HIV, contributing to HIV persistence and representing a significant barrier for HIV eradication.
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the contribution of T_{SCM} cells to the pool of HIV infected cells
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the degree of contribution of T_{SCM} cells to the pool of HIV infected cells
Materials & Methods

• Flow cytometry of T_{SCM} and CD4 subsets (NA, CM, EM and TD) from:

 - HAART-treated (n=20) with 10 years <50 copies/ml
 - EC (n=18) with at least 8 years <50 copies/ml
 - HIV negatives (n=9)
Gating Strategy

CD4

CD45RA

CD62L

CD95

International AIDS Society
Stronger Together
No differences in the proportion of T_{SCM} between cohorts
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the degree of contribution of T_{SCM} cells to the pool of HIV infected cells
Materials & Methods

• Sorting of T_{SCM} and CD4 subsets (NA, CM, EM and TD) from:

 - HAART-treated (n=20) with 10 years <50copies/ml
 - EC (n=18) with at least 8 years <50copies/ml

• Total HIV-1 DNA quantification by ddPCR and qPCR of T_{SCM} and CD4 subsets (NA, CM, EM and TD)
Droplet Digital PCR (ddPCR)

HIV-1 DNA

<table>
<thead>
<tr>
<th>C-</th>
<th>EM</th>
<th>CM</th>
<th>TD</th>
<th>T_{SCM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01</td>
<td>A05</td>
<td>C05</td>
<td>D05</td>
<td>E05</td>
</tr>
</tbody>
</table>

CCR5

<table>
<thead>
<tr>
<th>C-</th>
<th>EM</th>
<th>CM</th>
<th>TD</th>
<th>T_{SCM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>D06</td>
<td>D09</td>
<td>F09</td>
<td>G09</td>
<td>H09</td>
</tr>
</tbody>
</table>

Event Number

FAM Amplitude
T_{SCM} cells are an in-vivo reservoir for HIV-1.
Highest per cell levels of HIV within the T_{SCM} cells
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the degree of contribution of T_{SCM} cells to the pool of HIV infected cells
Materials & Methods

• Ex-vivo infection of PBMC from HIV-negative without ex-vivo stimulation (n=8)

 GFP R5, GFP VSV-G
 MOI = 0.01

 PBMCs
 4 days

• Determination of GFP+ cells by flow cytometry
Ex-vivo infection

CD4 0.50%

TD 0.56%

EM 0.35%

CM 0.56%

NA 0.43%

SCM 2.84%
T_{SCM} have higher ex-vivo infection levels compared to CD4 subsets.
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the degree of contribution of T_{SCM} cells to the pool of HIV infected cells
Materials & Methods

• Sorting of T_{SCM} and CD4 subsets from untreated HIV infected individuals with high viral load (n=3)

• Quantification of cell-associated HIV RNA of each CD4 subset by qPCR
T_{SCM} are susceptible to in-vivo HIV-1 infection

HIV-1 RNA

<table>
<thead>
<tr>
<th></th>
<th>SC M</th>
<th>NA</th>
<th>CM</th>
<th>EM</th>
<th>TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HIV RNA/ug RNA

- 10^{-5}
- 10^{-4}
- 10^{-3}
- 10^{-2}
- 10^{-1}
- 10^{0}
- 10^{1}
- 10^{2}
- 10^{3}
Aims

• To determine the proportion of T_{SCM} cells in different patient cohorts

• To ascertain if T_{SCM} cells are an in-vivo reservoir for HIV

• To evaluate the in-vitro and in-vivo susceptibility of T_{SCM} cells to HIV infection

• To determine the degree of contribution of T_{SCM} cells to the pool of HIV infected cells
Materials & Methods

• Longitudinal sorting of T_{SCM} and CD4 subsets from HAART-treated (n=8)
 - earliest time point: months after infection
 - latest time point: after 10 years of suppressive HAART

• Total HIV-1 DNA quantification of each subset by qPCR

• Calculation of the percentage of contribution of each subset to the pool of HIV infected CD4+ T cells
Constant levels of HIV-1 DNA within the T_{SCM} over time

![Graph showing constant levels of HIV-1 DNA over time in different intervals.](image-url)
Increased contribution over time of T_{SCM} to the HIV-1 infected pool

Short-term HAART

- % Frequency CD4
 - EM: 42%
 - CM: 17%
 - NA: 19%
 - SC: 1%
 - TD: 1%

- % Contribution
 - EM: 14%
 - CM: 33%
 - NA: 13%
 - SC: 16%
 - TD: 24%

Long-term HAART

- % Frequency CD4
 - EM: 40%
 - CM: 14%
 - NA: 21%
 - SC: 1%
 - TD: 1%

- % Contribution
 - EM: 24%
 - CM: 24%
 - NA: 16%
 - SC: 35%
 - TD: 1%

n=8
Conclusions

• In HAART-treated and EC subjects, high per-cell levels of HIV-1 DNA were observed in CD4 T_{SCM} exceeding corresponding levels in central-memory or effector-memory CD4 T cells.
• In ex-vivo assays, T_{SCM} were more susceptible to HIV-1 infection than memory or naïve CD4 T cells.
• In in-vivo assays, T_{SCM} contained viral RNA, indicating T_{SCM} are infected in vivo.
• Longitudinal investigations of HIV-1 DNA over 10 years demonstrated an increasing contribution of T_{SCM} to the total viral reservoir, while the contribution of more mature effector-memory and terminally-differentiated CD4 T cells tended to decline.

Tscm serve as a long-lasting reservoir for HIV-1 that importantly contributes to viral persistence. Targeting this specific cell compartment by immunological or pharmacological interventions may contribute to reducing viral persistence in vivo.
Acknowledgement

Massachusetts General Hospital MGH, Boston
- Eric Rosenberg
- Mathias Lichterfeld
- International HIV Controller Cohort
- Acute Cohort Boston

Ragon Institute of MGH, MIT and Harvard, Boston
- Katherine Seiss
- Chun Li
- Hong Sun
- Enrique M Gayo
- Jerome Rogich
- Maxime Lestra
- Jin Leng
- Amy Shaw
- Xu Yu
- Mike Waring
- Adam Chicoine
- Ildiko Toth
- Florencia Pereyra
- Bruce Walker

Funding: EMBO ALTF 847, NIH/NIAID AI093203, DDCF 2009034, amfAR