Status and Update of HIV Gene Therapy Clinical Trials

Pablo Tebas
University of Pennsylvania
Disclosures

<table>
<thead>
<tr>
<th>Relations that could be relevant for the meeting</th>
<th>Company names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsorship or refund funds (to Upenn)</td>
<td>• Merck, Viiv, Gilead, Inovio, Genone, Sangamo</td>
</tr>
<tr>
<td>Payment or other financial remuneration</td>
<td>• Merck, Viiv, Gilead</td>
</tr>
<tr>
<td>Shareholder rights</td>
<td></td>
</tr>
<tr>
<td>Other relations</td>
<td></td>
</tr>
</tbody>
</table>
Gene therapy for HIV and cancer. Two fields complementing each other

Historical overview of HSC gene therapy

Cynthia E. Dunbar et al. Science 2018;359:eaan4672
Lentiviral vectors led the way to CAR-T cell therapy

A Phase II Randomized Study of HIV-Specific T-Cell Gene Therapy in Subjects with Undetectable Plasma Viremia on Combination Antiretroviral Therapy

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

Clinical studies

Discovery of T Cells
Discovery of NK Cells
Retroviral Vectors
Primary T Cell Engineering
CD28/CD3ζ CAR
CD19 as CAR Target
T-body (CD3ζ CAR)
4-1BB/CD3ζ CAR

Scientific advances

Cynthia E. Dunbar et al. Science 2018;359:eaan4672
The 2 HIV cures have been “gene therapy”

<table>
<thead>
<tr>
<th>Berlin Patient</th>
<th>London Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Malignancy</td>
<td>Acute Myeloid Leukemia, diagnosed June 2006</td>
</tr>
<tr>
<td>Therapies Prior to CCR5Δ32</td>
<td>Induction (2X), and consolidation (1X) chemotherapy</td>
</tr>
<tr>
<td>Stem Cell Donor</td>
<td>10/10 HLA match + CCR5Δ32</td>
</tr>
<tr>
<td>Transplant #1</td>
<td>February 2007. Conditioning included fludarabine, cytarabine, amsacrine (FLAMSA), cyclophosphamide, rabbit antithymocyte globulin (ATG), 400-cGy TBI</td>
</tr>
<tr>
<td>ART Discontinued</td>
<td>Day of transplantation</td>
</tr>
<tr>
<td>ART-Free HIV-1 Remission</td>
<td>Over 12 years</td>
</tr>
<tr>
<td>GVHD</td>
<td>Grade I following first transplant</td>
</tr>
</tbody>
</table>

Although they may be “a cure” it is not “the cure”

Outcomes of BMT with delta 32 donors

<table>
<thead>
<tr>
<th>Location of Transplantation</th>
<th>Age of Patient yr</th>
<th>Type of Cancer</th>
<th>Type of Graft</th>
<th>Outcome after Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin†</td>
<td>40</td>
<td>Acute myeloid leukemia</td>
<td>HLA-matched unrelated</td>
<td>Alive after 7 yr, no viral rebound, no ART</td>
</tr>
<tr>
<td>Utrecht, the Netherlands‡</td>
<td>53</td>
<td>Myelodysplastic syndrome</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of the myelodysplastic syndrome and pneumonia after 2 mo</td>
</tr>
<tr>
<td>Münster, Germany§</td>
<td>51</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-mismatched unrelated</td>
<td>Died from infection after 4 mo</td>
</tr>
<tr>
<td>Essen, Germany¶</td>
<td>30</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-matched unrelated</td>
<td>CXXR4-tropic HIV-1 rebound, died from relapse of non-Hodgkin’s lymphoma after 12 mo</td>
</tr>
<tr>
<td>Minneapolis§</td>
<td>12</td>
<td>Acute lymphoblastic leukemia</td>
<td>Umbilical-cord blood</td>
<td>Died from GVHD after 3 mo</td>
</tr>
<tr>
<td>Santiago, Chile§</td>
<td>46</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>HLA-matched related</td>
<td>Died from pneumonia shortly afterward</td>
</tr>
<tr>
<td>Barcelona§</td>
<td>37</td>
<td>Non-Hodgkin’s lymphoma</td>
<td>Combined haploidentical bridge with umbilical-cord blood</td>
<td>Died from relapse of non-Hodgkin’s lymphoma after 3 mo</td>
</tr>
</tbody>
</table>

* ART denotes antiretroviral therapy, and GVHD graft-versus-host disease.
† Data are from Hütter et al.¹
‡ Data are from Kwon et al.³
§ Data are from a personal communication with the transplantation center.
¶ Data are from Kordelas et al.²

1. Traditional gene therapy approaches

Engineering cells resistant to HIV

STEPS

1. Isolate your cell of interest (CD4 or CD34)
2. Ex vivo modification/s to render them resistant to HIV
3. Reinfuse
4. In vivo positive selection during ATI

Modification to make it simpler: in vivo modification using vectors with the same resistance to HIV features

Gene therapy trials with Stem cell transplantation for lymphomas

- Autologous CD4+ T lymphocytes and CD34+
- Cal-1 lentiviral vector
- shRNA against CCR5 and C46

Academy to Military Medical Sciences, China

CRISPR CCR5 modified CD34+ cells

AMC

Stem cells gene-modified with CCR5 shRNA/TRIM5alpha/TAR decoy

City of Hope

Stem cells gene-modified to encode multiple anti-HIV RNAs (rHIV7-shI-TAR-CCR5RZ)

Mol Ther Methods Clin Dev. 2019 Feb 26;13:303-309
Gene therapy trials with Stem cell transplantation and T cells for people without medical need

<table>
<thead>
<tr>
<th>Gene Therapy</th>
<th>Target</th>
<th>Cell</th>
<th>Conditioning</th>
<th>Company (Univ)</th>
<th>Clin.gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal-1</td>
<td>CCR5</td>
<td>CD34</td>
<td>Busulfan</td>
<td>Calimmune (City of Hope)</td>
<td>NCT01734850</td>
</tr>
<tr>
<td></td>
<td>C46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB-728-T</td>
<td>CCR5</td>
<td>CD4/8</td>
<td>CTX</td>
<td>Sangamo (Case)</td>
<td>NCT03666871</td>
</tr>
<tr>
<td>C34-CXCR4</td>
<td>CXCR4</td>
<td>CD4/8</td>
<td>NA</td>
<td>Sangamo (Penn)</td>
<td></td>
</tr>
<tr>
<td>SB-728mR-HSPC</td>
<td>CCR5</td>
<td>CD34</td>
<td>Busulfan</td>
<td>Sangamo (City of Hope)</td>
<td>NCT02500849</td>
</tr>
<tr>
<td>shRNA</td>
<td>CCR5</td>
<td>CD34</td>
<td></td>
<td>Kanglin Biotech (Shanghai PH)</td>
<td>NCT03517631</td>
</tr>
</tbody>
</table>
A Phase I Study of Autologous T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 in HIV-Infected Patients

10B CCR5 ZFN treated CD4 T cells Are expanded Of which only 5-10% CCR5 defective Infused in a human that has between 300B and 600B CD4 T cells
• CCR5 ZFN frequency correlated with time to rebound and viral set point
• Survival advantage of the genetically modified cells in the presence of HIV

Sangamo reported other Δ32 CCR5 heterozygotes (2) treated with CCR5 ZFNs demonstrated sustained control of HIV-1 in the absence of HAART. Control is some individuals was observed for more than 300 days
Can we do better, increase the engraftment of genetically modified cells?

Cohort 1
- ZFN no CTX
- N=3

If no DLT, if DLT dose will be maintained

Cohort 2
- WT CCR5
- Open simultaneously

Cohort 3
- Δ32 heterozygous

ZFN + CTX
- 1g/m²
- N=3
- 1.5g/m²
- N=3

ZFN + CTX
- 1g/m²
- N=3
- 1.5g/m²
- N=3
Schedule of Events

STEP 1
Baseline evaluation manufacturing

STEP 2
ZFM CD4 alone
ZFN CD4 + 1 g/m² CPM
ZFN CD4 + 3 g/m² CPM

STEP 3
Analytical Treatment Interruption

STEP 4
ART Monthly visits until HIV BLQ

Leukapheresis
Rectal biopsy
Safety labs
HIV RNA

Cell infusion (d 0)
Cyclophosphamide (d-2)

16 week analytical treatment interruption

Successful ART

End of study
Apheresis- 6 Months after ART control

www.iasociety.org
Infusion of CCR5 ZFN Treated Cells Results in a Delay of Viral Rebound

Time to Virologic Rebound (VL > 200 copies/ml)

- ACTG (N=93)
- Cohort 1 (N=3)
- Cohort 2 (N=6)
- Cohort 3 (N=4*)
*Excludes Pt 305

Time since ATI (weeks)

Proportion Suppressed

p = 0.03

Tebas et al. CROI 2019
CD4 T cells with CCR5 ZFN disrupted alleles durably persist
Why only a small fraction of modified cells should have an effect?

Improved HIV-specific immune after infusion of CCR5 ZFN treated CD4 T cells

CD4 reconstitution and reduction of reservoir in HIV-positive patients following a single infusion of CCR5 modified autologous CD4 T cells (SB-728-T)

However, no effect on the replication competent reservoir

Conclusions:

1. Manufacturing T cells with ZFN disrupted alleles is feasible and can be safely infused into HIV infected individuals.

2. Infusion of CCR5 ZFN T cells can delay viral rebound.

3. These cells stably engraft. Some individuals from our initial trial still maintain >1% of T cells with CCR5 ZFN disrupted alleles. CTX helped engraftment but the effect was modest.

4. We observed improved CD8 but not CD4 T cell responses after CD4 T cell infusions.

5. The HIV reservoir was unaffected by these cell infusions but
2. New gene therapy approaches
Engineering cells that produce antiviral proteins

3. New gene therapy approaches. CAR T Engineering the “kill” (and protecting the cells at the same time)

R.S. Leibman, J.L. Mol. Ther., 23 (2015), pp. 1149-1159
BEAT HIV CAR T trial

CD4 CAR+ CCR5 ZFN- modified T cell

Weeks: -15 0 (d1) 4 8 12 16 20 24 28 32 36 M3 M6 M9

Restarting rule (HIV c/ml):
- > 200
- >1,000 for 6 weeks
- > 200

N=6
- HIV+ Treated for at least 1 year
- VL<50 c/mL for at least 6 months
- CD4 > 450 cells/μL

N=6
- Cell Manufacturing
- ART+ CAR/ZFN
- ATI +CAR/ZFN
- ART
- ART

Cell infusion:
- Screening/entry
- Safety labs/CD4
- VL
- Leucopheresis/rectal biopsy

Optional continued ATI (CD4/VL every 2 weeks)

STEP Weeks: -15 0/0 4 8/0 4 8 12 16/0 4 8 12 M3 M6 M9
Study objectives

• Primary
 – Safety and tolerability

• Secondary objectives
 – Effects on HIV reservoir
 – Effects on CD4 T cell count
 – Antiviral effects
 – Evaluate persistence, frequency, and tracking
 – Evaluate emergence of viral resistance
 – Effects on immune function
 – Examine transcriptional profile
The risks of CAR T cell therapy

Neurotoxicity
- Delirium
- Aphasia
- Seizures
- Cerebral edema
- Intracranial hemorrhage

Hemodynamic instability
- Tachycardia
- Hypotension
- Capillary leak syndrome

Organ dysfunction
- AST and ALT elevation
- Hyperbilirubinemia
- Respiratory failure

Carl H. June et al. Science 2018;359:1361-1365
Long term safety of this particular CAR T

RESEARCH ARTICLE

ADOPTIVE T CELL TRANSFER

Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells

John Scholler,¹* Troy L. Brady,²* Gwendolyn Binder-Scholl,¹ Wei-Ting Hwang,³ Gabriela Plesa,¹ Kristen M. Hege,⁴ Ashley N. Vogel,¹ Michael Kalos,¹ James L. Riley,² Steven G. Deeks,⁵ Ronald T. Mitsuyasu,⁶ Wendy B. Bernstein,⁷ Naomi E. Aronson,⁷⁺ Bruce L. Levine,¹ Frederic D. Bushman,²⁺ Carl H. June¹⁺

<table>
<thead>
<tr>
<th>Annual</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detected</td>
<td>20</td>
<td>25</td>
<td>33</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>212</td>
</tr>
<tr>
<td>Tested</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>15</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>221</td>
</tr>
</tbody>
</table>

Science translational medicine. 2012 May 2;4(132):132ra53-.
4. New gene therapy approaches
Editing out HIV from the reservoir (in vivo).
Using CRISPR and LASER ART

Gene therapy and HIV cure

- The N=2 cases of remission/functional cure support our efforts in finding a cure for HIV.
- Advances in immunotherapy, cell and gene engineering and delivery systems will make these approaches easier to implement in the future.
- Gene therapy may be a part of a combination approach to HIV cure.
Acknowledgements

Penn ACTU
Larisa/Amerber/Jenna/Mark/Su
Joe Quinn/Eileen Donaghe
Ro Kappes, Deb Kim
Rob Roy MacGregor

Jacoby Medical Center
David Stein
Angelo Seda

U. Penn Abramson Inst.
Carl June
Bruce Levine
Jim Riley
Richard Carroll
Julie
Liz Veloso

Wistar Institute
Luis Montaner

Penn CFAR
Clinical Core
Ian Frank

Immunology Core
John Wherry
Hong Kong
Kevin Gayout

Viral/Molecular core
Farida Shaheen
Katie Bar
Ron Collman
Rick Bushman
Jim Hoxie

ViRxsSys
Sangamo
Adaptaminue
Tmunity

Penn CTRC

NIH-NIAID