Anti-PD-1 disrupts HIV latency in non-proliferating but not in proliferating T-cells

Van der Sluis RM, Kumar NA, Evans VA, Dantanarayana A, Sékaly RP, Fromentin R, Chomont N, Cameron PU and Lewin SR
Conflicts of interest

• Investigator initiated industry funded studies from
 – Viiv Healthcare
 – Gilead Sciences
 – Merck
 – Tetralogic

• Participation in educational activities or consultancies (paid to my institution) from
 – Viiv Healthcare
 – Gilead Sciences
 – Merck
 – Calimmune
Background

- In HIV-infected individuals on ART, HIV is enriched in PD-1hi cells and cells that express multiple immune checkpoint markers \(^1,2\)

- Anti-CTLA-4 (ipilimumab) increased cell associated unspliced HIV RNA in vivo, consistent with latency reversal \(^3\)

- The combination of anti-PD-1 and anti-CTLA-4 has enhanced potency in the management of metastatic melanoma \(^4\)

Could combination immune checkpoint blockade be used to reverse latency and enhance HIV-specific T-cell function as a strategy for cure?

In vitro model for HIV latency

- eFluor670 labelled rCD4+ T-cells + mo + mDC
- EGFP+ HIV
- Days post infection

Productive infection:
- eFluor670hi EGFP+
- Days 0-2

Non-proliferating infection:
- eFluor670lo EGFP-
- Days 3-5

Proliferating infection:
- eFluor670lo EGFP-
- Days 6-8

- rCD4+ T-cells = resting CD4+ T-cells; SEB = Staphylococcal Enterotoxin B
- mo = monocytes; mDC = myeloid DC
- IC = immune checkpoint; RAL = raltegravir

Evans et al., Plos Path 2013; Kumar et al., Retrovirology 2016

+ IC blocker
+-/− SEB
+ T20+ RAL
Immune checkpoint markers are expressed at high levels in proliferating T-cells following co-culture with monocytes.
Proliferating T-cells co-express multiple immune checkpoint markers

ICM = PD1+Tim3+TIGIT
Latency reversal in non-proliferating cells is possible in the presence of SEB or with multiple IC blockers.
Proliferating cells: latency reversal is only possible with multiple IC blockers

* p<0.05, ** p<0.01, student t test, ICB compared to isotype ctrl

N = 6, black lines are mean values ± SEM
Anti-PD-1 (nivolumab) reverses HIV latency in vivo

Metastatic melanoma
HIV RNA < 20
CD4= 620 cells/ul
On ART for 8 years

cART

CA-US HIV RNA (copies per million 18s)

-1 +1 +7
Ipilimumab

-1 +1 +7
-1 +1 +7
-1 +1 +7
Summary

- Anti-PD-1 can reverse latency in vivo and in vitro but the effects differed in prolifering and non-prolifering latently infected cells.

- In vitro, latency reversal with anti-PD-1 was only seen with the addition of:
 - T-cell activation (SEB) or
 - Combination immune checkpoint blockade

- Co-expression of IC markers, especially on prolifering latently infected cells, may limit the potency of using anti-PD-1 alone for latency reversal.

- Anti-PD-1 alone and in combination with other ICBs, should be further explored in clinical trials as a strategy to reverse latency.
Acknowledgements

Doherty Institute, Uni Melb and Royal Melbourne Hospital
Lewin/Cameron Lab
Paul Cameron
Renee van der Sluis
Vanessa Evans
Nitasha Kumar
Ashanti Dantanarayana
Zuwena Richardson
Ajantha Solomon
Surekha Tenakoon
Judy Chang
Barbara Scher

The Royal Prince Alfred Hospital, Sydney
Catriona McNeill
Roger Garcia

Westmead Millenium Institute, University of Sydney
Sarah Palmer

University of Montreal, Montreal
Nicolas Chomont
Remi Fromentin

Oregon Health Sciences University
Afat Okoye
Louis Picker

UCSF, San Francisco
Steven Deeks
Peter Hunt
Elisabeth Sinclair
Rebecca Hoh
Mike McCune

Case Western University
Rafick Sekaly

Merck
Richard Barnard
Daria Hazuda

Bristol Myers Squibb
Alan Korman
Non-proliferating cells: latency reversal is possible with anti-PD1 in the presence of SEB

US = unstimulated;

* p<0.05, ** p<0.01, student t test

N = 6, black lines are mean values ± SEM