Jak inhibitors employ novel mechanisms to block reservoir seeding and HIV persistence

Christina Gavegnano, PhD
Center for AIDS Research, Emory University
Laboratory of Biochemical Pharmacology
Department of Pediatrics
Atlanta GA 30322, USA
Background: Barriers to an HIV Cure and potential crosstalk to malignancies

- Current HAART cannot eliminate HIV-1.
 - Viral reservoirs:
 - Myeloid (including brain/CNS).
 - Lymphoid.
 - Pharmacological sanctuaries.
 - Ongoing inflammation (sCD14, IL-6, TNF-α, IL-7/15, D-dimer, sCD163, IL-1-α/β, others) even in individuals with well-controlled viremia contributes to reservoir:
 - Establishment, maintenance, and expansion.

Unmet clinical need = safe, specific, potent inhibitors of HIV-induced inflammation.
Our group and more recently others demonstrated that Jak inhibitors can block HIV replication and associated inflammation in macrophages and T cells *in vitro* and *in vivo*.

Ruxolitinib and tofacitinib are potent and selective inhibitors of HIV-1 replication and virus reactivation in vitro.

Gavegnano C¹, Detorio M, Montero C, Bosque A, Planelles V, Schinazi RF.

The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model.

Haile WB¹, Gavegnano C², Tao S², Jiang Y³, Schinazi RF⁴, Tyor WR⁵.

Retrovirology

Janus kinase inhibition suppresses PKC-induced cytokine release without affecting HIV-1 latency reversal ex vivo

Adam M. Spivak², Erin T. Larragoite²*, McKenna L. Coletti², Amanda B. Macedo², Laura J. Martins², Alberto Bosque² and Vicente Planelles²
Hypothesis:
Blockade of HIV-induced inflammation with a Jak inhibitor could lead to purge of the viral reservoir, resulting in a functional cure or elimination of HIV-1.

Reservoir cell with current HAART

Reservoir persists, divides, expands.

Inability to eliminate HIV-1

Reservoir cell with ruxolitinib as HAART add on

Reservoir cells will die and reservoir could be eliminated.

- Possibility to remove HAART without viral rebound.
- Functional cure or elimination of HIV-1.
- Shorter duration of treatment.

- Decreased reservoir lifespan.
- Block reservoir expansion, reseeding.
Advantages of baracitinib versus ruxolitinib

Jak 1/2 inhibitors that are nanomolar in vivo inhibitors of IL-6, IL-1α/β, TNF-α, CRP, D-Dimer, other inflammatory markers.

Ruxolitinib
- FDA approved for myelofibrosis (2011).
- FDA approved for polythemia vera (2014).
- Orally available bid dosing (10-15 mg).
- Hepatic clearance.
- No approval for pediatric population.
- ACTG sponsored multi-site Phase 2A study “A Randomized, Pilot Study of Ruxolitinib in Antiretroviral-Treated HIV-Infected Adults in HIV-infected subjects” (n = 60; underway).

Baracitinib
- EU and Japan approval for rheumatoid arthritis.
- FDA approval pending in the United States.
- Orally available qid dosing (1, 2, 4 mg).
- Renal clearance.
- Second generation Jak inhibitor with reduced toxicity profile.
- Approved in pediatric populations (EU, Japan).
Markers of the Jak-STAT pathway and homeostatic proliferation are associated to HIV reservoir size \textit{in vivo}.

Jak inhibitors block reservoir establishment, maintenance, and expansion in primary monocytes/macrophages \textit{in vitro}.

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC$_{50/90}$ in PBM cells, µM</th>
<th>EC$_{50/90}$ in macrophages, µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baracitinib</td>
<td>0.07/5.9</td>
<td>0.4/7.9</td>
</tr>
<tr>
<td>3TC</td>
<td>0.01/0.9</td>
<td>0.1/1.2</td>
</tr>
</tbody>
</table>

- No observed toxicity ≥ 50 µM across all cells tested.
- Therapeutic window > 100 for all measures reported.
- All concentrations that block pro-HIV events are physiological.

Gavegnano and Schinazi et al, AAC, 2013 and unpublished work.
Jak inhibitors block reservoir establishment, maintenance, and expansion in primary monocytes/macrophages \textit{in vitro}

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC$_{50/90}$ in PBM cells, µM</th>
<th>EC$_{50/90}$ in macrophages, µM</th>
<th>Inhibition of TNF-α induced reactivation (J-lat, µM)</th>
<th>Inhibition of PMA induced reactivation (macrophages, µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baracitinib</td>
<td>0.07/5.9</td>
<td>0.4/7.9</td>
<td>0.7/1.9</td>
<td>0.4/0.7</td>
</tr>
<tr>
<td>3TC</td>
<td>0.01/0.9</td>
<td>0.1/1.2</td>
<td>> 50</td>
<td>37.4</td>
</tr>
</tbody>
</table>

- No observed toxicity \geq 50 µM across all cells tested.
- Therapeutic window > 100 for all measures reported.
- All concentrations that block pro-HIV events are physiological.

Gavegnano and Schinazi et al, AAC, 2013 and unpublished work.
Jak inhibitors block reservoir establishment, maintenance, and expansion in primary monocytes/macrophages \textit{in vitro}.

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC$_{50/90}$ in PBM cells, µM</th>
<th>EC$_{50/90}$ in macrophages, µM</th>
<th>Inhibition of TNF-(\alpha) induced reactivation (J-lat, µM)</th>
<th>Inhibition of PMA induced reactivation (macrophages, µM)</th>
<th>Reduction of non-dividing latent CD4 T cells, µM</th>
<th>Inhibition of HIV-induced HLA-DR and CD163 (macrophages, µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baracitinib</td>
<td>0.07/5.9</td>
<td>0.4/7.9</td>
<td>0.7/1.9</td>
<td>0.4/0.7</td>
<td>0.05/0.7</td>
<td>0.1/1.2</td>
</tr>
<tr>
<td>3TC</td>
<td>0.01/0.9</td>
<td>0.1/1.2</td>
<td>> 50</td>
<td>37.4</td>
<td>37.4</td>
<td>23.7</td>
</tr>
</tbody>
</table>

- No observed toxicity \geq 50 µM across all cells tested.
- Therapeutic window > 100 for all measures reported.
- All concentrations that block pro-HIV events are physiological.

Gavegnano and Schinazi et al, AAC, 2013 and unpublished work.
Summary for Preclinical Evaluation of Baracitinib

• Baracitinib demonstrated potent, specific inhibition of key events that prevent eradication of HIV-1 in macrophages and T cells, which is a unmet clinical need for HIV-infected individuals.
 - Reservoir establishment, maintenance, lifespan, reseeding.
 - Reservoir maintenance.
 - CNS infection and HIV-induced encephalitis and neurocognitive impairments (HAD/HAND).

• Blockade of HIV-specific inflammatory events by baracitinib could reduce or prevent inflammatory-driven malignancies in HIV-infected individuals.

• Baracitinib could represent an add-on therapy to HAART that could decay the viral reservoir, eventually allowing for withdrawal of HAART without viral rebound.

• Human studies are underway with ruxolitinib, a similar Jak 1/2 inhibitor:
 – Phase 2a ACTG sponsored study (A5336) “A Randomized, Pilot Study of Ruxolitinib in Antiretroviral-Treated HIV-Infected Adults” (n = 60).
Acknowledgements

Team members

- Raymond F. Schinazi, PhD, DSc
- Vincent Marconi, MD
- William Tyor, MD
- Guido Silvestri, MD
- Woldeab Haile, PhD
- Rafick Sekaly, PhD
- Jessica Brehm, PhD
- Franck Dupuy, PhD
- Selwyn Hurwitz, PhD
- Catherine Montero, BS
- ACTG team

Funding:
NIH 4RO1MH10099904
CFAR NIH grant P30AI050409
Emory Center for Drug Discovery
and NIH ACTG
Extra slides
Jak inhibitors confer inhibition of multiple pro-HIV cytokines

PRO HIV CYtokines are boxed

- IL-2
- IL-7
- IL-15
- IL-6
- IFN-α/β
- IL-10
- LIF
- gp130 family
- IL-11, OSM

Baracitinib and Ruxolitinib

Tofacitinib (primarily Jak3)

Jak 1

Jak 2

Jak 3

Tyk2

Baracitinib and Ruxolitinib