Impact of Vorinostat Treatment of Non-Hodgkin’s Lymphoma on HIV-1 Latent Reservoir

Adam Capoferrì, Juan Carlos Ramos, Daniel Xu, Daniel I.S. Rosenbloom, Janet D. Siliciano, Robert F. Siliciano, Ariela Noy, Page Moore, Richard F. Ambinder, Christine M. Durand
HIV Cure Strategies

- Major barrier to HIV cure is a latent reservoir of replication competent HIV in resting CD4+ T cells that persists despite ART

- “Shock and Kill” Strategy
VOR in Cancer and HIV Cure

- Vorinostat (VOR) is a HDAC inhibitor that is approved for cancer treatment.
- Identified as a potential latency reversing agent (LRA).
- Prior clinical studies looking at impact of VOR on HIV persistence:
 - Increase of cell-associated HIV RNA.
 - Did not report on changes in replication competent HIV in resting CD4 T cells measured by viral outgrowth.
 - VOR is perturbing the latent reservoir.

Archin et al. (2012) Nature
Elliott et al. (2012) PLOS Pathogen
AMC 075: VOR for HIV Lymphoma Phase II, 90 participants

- Chemotherapy (R-EPOCH) with randomization +/- VOR
- VOR: 300 mg orally, day 1-5 of each 21 day cycle, for 6 cycles

Baseline Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Visit 7 (270 d.) Visit 12 (360 d.)

Pre-Rx Measure Latent reservoir

Post-Rx Measure Latent reservoir

- Latent reservoir was measured in a subset of patients whose HIV was suppressed at baseline and remained suppressed throughout study on ART
Quantitative Viral Outgrowth Assay

- Quantitative Viral Outgrowth Assay (QVOA)

Resting CD4+ T cells from patients on ART

Activation & Amplification

1x10^6 2x10^5 4x10^4 8x10^3 1.6x10^3 3.2x10^2

p24 Positive

p24 Negative

Day 14 supernatant p24 antigen detected by ELISA

- For statistics, a mixed effects Bayesian model

Impact of chemotherapy and VOR on CD4 counts

No significant change
HIV LR Measurements (n = 14)

VOR Treatment Effect

<table>
<thead>
<tr>
<th></th>
<th>Fold-change Median Estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-patient average</td>
<td>1.08 (0.21, 5.13)</td>
</tr>
</tbody>
</table>
Individual treatment effect

Chemotherapy Arm

Fold-change median estimate

Chemotherapy Participants

031017 061025 081038 012047 022049 060071 061074

0.001

0.01

0.1

1

10

100
Conclusions

• In a randomized trial of VOR plus chemotherapy, there were no significant changes detected in the HIV LR by qVOA in 14 patients
 – By group (fold-change 1.08) or by individual (fold-change range 0.48-2.70)

• Limitations:
 – Large confidence intervals with qVOA
 – Small N to date (anticipating 6 additional patients)
 – Did not looked specifically for a “shock” or HIV reactivation effect
 – Patients with malignancies receiving chemotherapy may not have effective CTL responses to eliminate latently infected cells even if HIV is reactivated

• Consistent with a recent new study by Archin/Margolis of 5 patients who received VOR 3 days per week x 8 weeks, no change in reservoir by qVOA measurements

Archin et al. (2017) JID
Future Directions

• Need for more effective “kill” strategies
Acknowledgements

The AMC 075 Team
Juan Carlos Ramos
Richard Ambinder
Daniel Xu
Ariela Noy
Page Moore

Robert F. Siliciano
Janet D. Siliciano
Christine M. Durand

Daniel I.S. Rosenbloom

K23CA177321
Probability of VOR Effect

<table>
<thead>
<tr>
<th>Participant</th>
<th>Fold-change Median Estimate (95% CI)</th>
<th>Probability that VOR increased IUPM</th>
<th>“p-value”</th>
</tr>
</thead>
<tbody>
<tr>
<td>152009</td>
<td>0.85 (0.16, 4.72)</td>
<td>41%</td>
<td>0.82</td>
</tr>
<tr>
<td>061053</td>
<td>0.95 (0.13, 6.67)</td>
<td>47.7%</td>
<td>0.954</td>
</tr>
<tr>
<td>081054</td>
<td>2.20 (0.38, 14.96)</td>
<td>81.5%</td>
<td>0.37</td>
</tr>
<tr>
<td>132070</td>
<td>1.51 (0.23, 11.32)</td>
<td>71.6%</td>
<td>0.57</td>
</tr>
<tr>
<td>152085</td>
<td>0.48 (0.01, 3.56)</td>
<td>24.5%</td>
<td>0.49</td>
</tr>
<tr>
<td>241088</td>
<td>0.62 (0.07, 3.81)</td>
<td>27.5%</td>
<td>0.55</td>
</tr>
<tr>
<td>132091</td>
<td>2.70 (0.45, 23.28)</td>
<td>86%</td>
<td>0.28</td>
</tr>
</tbody>
</table>
How to measure treatment effect while controlling for temporal change?

Method: Mixed effects Bayesian model coded in Stan

Baseline IUPM for each participant (fixed effect)

Temporal fold-change in IUPM (random effect, applies to both arms)

Treatment fold-change in IUPM (random effect, applies to treatment arm only)

“Effective IUPM” in well

Poisson likelihood that a well is positive / negative

cells in well (known)

Method adapted from Rosenbloom, Deng, ..., Busch, Bacchetti (in prep)