IS HEPATITIS ELIMINATION POSSIBLE AMONG PEOPLE LIVING WITH HIV, AND WHAT WILL IT TAKE TO ACHIEVE IT?

Natasha Martin, DPhil
Associate Professor
Division of Global Public Health, University of California San Diego

Britt Skaathun, Annick Borquez (UCSD)
Peter Vickerman, Matthew Hickman, Hannah Fraser, Louis MacGregor (University of Bristol)
DISCLOSURES

I have received unrestricted research grants from Gilead and honoraria from Gilead, AbbVie, and Merck.
WHO HEPATITIS ELIMINATION TARGETS

Incidence: 90% reduction in new cases of chronic HBV and HCV by 2030

Mortality: 65% reduction in HBV and HCV deaths by 2030

HBV

HCV

Scenario (Epidemic type)

Woodall H, et al. EASL 2015
WHO HEPATITIS ELIMINATION TARGETS

Impact Targets
- **Incidence:** New cases of chronic HBV and HCV
- **Mortality:** HBV and HCV deaths

WHO TARGET BY 2030
- 90% relative reduction for Incidence
- 65% relative reduction for Mortality

Service Coverage Targets
- **HBV childhood vaccination coverage:** 90%
- **HBV birth dose vaccination coverage or other PMTCT initiative:** 90%
- **Screening of blood donations:** 100%
- **Safe injections:** % of injections administered with safety engineered devices in and out of health facilities
- **Harm reduction:** number of sterile needles and syringes provided per person who inject drugs per year
- **HBV and HCV diagnosis:** 90%
- **HBV and HCV treatment:** 80% of persons with chronic infection treated

HEPATITIS C VIRUS ELIMINATION AMONG PEOPLE LIVING WITH HIV (PLWH)

• No particular targets for HIV-infected populations
• Settings need guidance as to how to achieve targets (overall and among PLWH)
• Different risk groups will likely require different strategies
• Dynamic transmission models can help determine what is required to achieve incidence targets
TALK OUTLINE

• Elimination among HIV-infected people who inject drugs (PWID)

• Elimination among HIV-infected men who have sex with men (MSM)

• Achieving HCV treatment scale-up for others at risk of reinfection: cost-effectiveness in India
HCV elimination among HIV-infected people who inject drugs (PWID)
ELIMINATION OF HCV AMONG HIV-INFECTED PWID

• Discussion about elimination among HIV+ subgroups through scale-up of HCV treatment to PLWH

• **Research Question:** Can treatment for HIV+ PWID eliminate HCV among this group?
 • **Methods:** Dynamic joint model of HIV and HCV transmission among PWID (current and former) calibrated to Andalucia, Spain.
 • ~30% PWID HIV positive
 • ~70% PWID HCV seropositive
 • 90% of HIV+ ever PWID HCV seropositive
IMPACT OF TREATING ALL HIV+ PWID IN ANDALUCIA: ELIMINATION AMONG HIV+ PWID NOT POSSIBLE TREATING ONLY PLWH

Skaathun B, Borquez A, and Martin NK, preliminary work
EUROPE: COMBINATION PREVENTION REQUIRED TO REDUCE INCIDENCE AMONG ALL PWID TO <2% 10 YEARS

- <80 per 1000 PWID annually treated without harm reduction scale up
- <50 per 1000 PWID + harm reduction to 80%
GENERAL SCENARIOS: COMBINATION INTERVENTION REQUIRED TO REDUCE INCIDENCE AMONG ALL PWID BY 90%, 2017-2030

- Stable epidemics, 12 year injecting duration
- <60 per 1000 PWID treated annually without harm reduction
- With harm reduction, could reduce to <40 per 1000 PWID annually

Annual DAA treatments per 1000 PWID

- No coverage of OST or NSP
- Coverage of OST and NSP = 20%
- Coverage of OST and NSP = 40%
- Coverage of OST and NSP = 60%

Baseline HCV chronic prevalence among PWID

Preliminary work based on Martin NK et al. CID 2013
SCOTT COUNTY, INDIANA: EPIDEMIC SCENARIOS WITH INCREASING INCIDENCE REQUIRE MORE SCALE-UP

Treatments per 1000 PWID annually required to reduce incidence by 90% by 2030

- 3-fold higher treatments required than if epidemic was stable

AUSTRALIA: REGULAR TESTING IS REQUIRED

Annual HCV incidence

- Treatment scale-up only
- Treatment + rapid RNA + annual testing of PWID in OST
- Treatment + rapid RNA
- WHO target (80% reduction)

Year

2020

2025

2030

Annual incidence
TREATMENT PRIORITIZATION LIMITING SCALE-UP TO PWID EVEN IN RESOURCE RICH COUNTRIES

H owever in low-mid prevalence settings, more cost-effective to prioritize early treatment to PWID
HCV elimination among HIV-infected MSM
HCV PRIMARY INCIDENCE AMONG HIV+ MSM

Fig. 2. Forest plot of hepatitis C virus seroconversion in HIV-positive MSM in 15 studies.

Hagan H et al. AIDS 2015; 29:2335-2345
HCV REINFECTION INCIDENCE AFTER SVR AMONG HIV+ MSM

4. Martin NK CROI 2017; Chaillon A et al. In preparation
UK: NEED MORE TREATMENT AND MORE TESTING OR BEHAVIOR CHANGE

Difficult to reduce low incidence by 90% (to <0.14%)

Requires:
• All treated after diagnosis (currently 88% tested/year) plus 25% behavior reduction, or
• Enhanced testing and treatment - all tested every 6 months and treated

Preliminary work based on Martin NK et al. CID 2016
BERLIN: INCREASING INCIDENCE AND HIGH TESTING/TREATMENT, NEED ACUTE TREATMENT OR BEHAVIOR CHANGE

Difficult to reverse increasing incidence with existing high testing/treatment rates.
Requires:
• All newly diagnosed treated within 3 months (licensing for acute treatment), or
• All newly diagnosed treated within 6 months plus 10% risk behavior reduction

90% reduction
SWITZERLAND: INCREASING HIGH RISK BEHAVIOR MEANS ELIMINATION REQUIRES BEHAVIOR CHANGE

• Sexual behavioral risk heterogeneity and HIV preferential mixing among sexual partners is likely to explain the concentration of HCV among HIV+ MSM.

• Changes in sexual mixing patterns could reshape the epidemic.
 • E.g. Preferential mixing due to PrEP could HCV among HIV- MSM

HCV TASP AMONG HIV+ MSM IN THE NETHERLANDS: ENCOURAGING REAL WORLD EVIDENCE

Model: elimination not possible by 2030, and at most ~20% reduction in 2 years...BUT:

- Real-world halving in acute HCV incidence 2014-2016!

Hullegie SJ et al. CROI 2015 abstract nr.536

<table>
<thead>
<tr>
<th>Year</th>
<th>Incidence rate per 1000 py/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>14</td>
</tr>
<tr>
<td>2016</td>
<td>8</td>
</tr>
<tr>
<td>2017</td>
<td>4</td>
</tr>
<tr>
<td>2018</td>
<td>2</td>
</tr>
<tr>
<td>2019</td>
<td>1</td>
</tr>
<tr>
<td>2020</td>
<td>0.5</td>
</tr>
<tr>
<td>2021</td>
<td>0.2</td>
</tr>
<tr>
<td>2022</td>
<td>0.1</td>
</tr>
<tr>
<td>2023</td>
<td>0.05</td>
</tr>
<tr>
<td>2024</td>
<td>0.025</td>
</tr>
<tr>
<td>2025</td>
<td>0.0125</td>
</tr>
<tr>
<td>2026</td>
<td>0.00625</td>
</tr>
<tr>
<td>2027</td>
<td>0.003125</td>
</tr>
<tr>
<td>2028</td>
<td>0.0015625</td>
</tr>
<tr>
<td>2029</td>
<td>0.00078125</td>
</tr>
<tr>
<td>2030</td>
<td>0.000390625</td>
</tr>
<tr>
<td>2031</td>
<td>0.0001953125</td>
</tr>
<tr>
<td>2032</td>
<td>0.00009765625</td>
</tr>
<tr>
<td>2033</td>
<td>0.000048828125</td>
</tr>
<tr>
<td>2034</td>
<td>0.0000244140625</td>
</tr>
<tr>
<td>2035</td>
<td>0.00001220703125</td>
</tr>
</tbody>
</table>

2014
A-HCV n=93
PYFU=8290
11.2/1000PYFU (95% CI 9-14)
1.1% per year

2016
A-HCV n=49
PYFU=8961
5.5/1000PYFU (95% CI 4-7)
0.55% per year

IRR 0.49 (95% CI 0.34-0.69)

Jan-Dec 2014 11.2/1000
Jan-Jun 2016 6.9/1000
Jul-Dec 2016 4.0/1000

Boerekamp A et al. CROI 2017 abstract 137LB
Achieving HCV treatment scale-up for others at risk of reinfection: cost-effectiveness in India case-study
OTHERS AT RISK OF REINFECTION: COST/REINFECTION CONCERNS IN INDIA

• In many LMICs, other PLWH at risk via unsafe medical/community injections
• India does not have a national screening and treatment strategy for elimination
• Substantial concerns about reinfection (& cost) among general population
 • 2.9 injections/person/year (over 3 billion), half considered unsafe
 • ~40% of HCV infections due to unsafe medical injections¹
• Recent evidence DAAs are cost-saving in India, but study does not include reinfection²

• Research question: Are DAAs cost-effective in India including reinfection?
 • Method: Closed cohort markov model with a fixed rate of reinfection/yr, health care provider perspective, India-specific public hospital health care costs, DAAs: 85-95% SVR and $900/treatment

DAAS IN INDIA COST-SAVING FOR F2-F4
INCLUDING RISK OF REINFECTION

DAAs for F2-F4 COST-SAVING (negative ICER due to negative costs) for reinfection rates <25% per year, compared to no treatment.

Would be even more cost-saving for PLWH due to accelerated liver disease.
TREAT ALL (F0-F4) COST-EFFECTIVE COMPARED TO F2-F4 WITH VERY HIGH REINFECTION RATES

Intervention highly cost-effective if ICER < per capita GDP in India ($1580).

DAAs for all (F0-F4) HIGHLY COST-EFFECTIVE for reinfection rates <25% per year, compared to no treatment.

Would be more cost-effective for PLWH

Chaillon A and Martin NK preliminary results
CONCLUSIONS
CONCLUSIONS:
HCV ELIMINATION AMONG HIV-INFECTED PWID

• To eliminate HCV among HIV+ PWID, need to target ALL PWID
• Elimination possible with
 • achievable levels of treatment
 • in combination with harm reduction
• More difficult in outbreaks and if scale-up delayed
• Current prioritization undermining elimination efforts and may not be most cost-effective
• Affordability still a key concern
CONCLUSIONS:
HCV ELIMINATION AMONG HIV-INFECTED MSM

• Difficult to reduce incidence by 90%, as would need to be <0.1-0.2% in most settings

• Elimination likely requires
 • Frequent HCV testing AND
 • Prompt treatment of all AND/OR
 • Behavior change

• Lacking empirical evidence for behavioral interventions to prevent HCV among MSM

• Other concerns: PrEP? Global transmission network?
DISCUSSION:
HCV ELIMINATION AMONG OTHER HIV+ RISK GROUPS

• In many LMICs, other PLWH at risk via unsafe medical/community injections, etc.

• Concerns surrounding reinfection hampering development of elimination strategies
 • HCV treatment can be cost-saving despite reinfection in India
 • Some reinfection is good - means you are treating people with ongoing risk!
ACKNOWLEDGEMENTS

UK: Peter Vickerman, Matthew Hickman, Hannah Fraser, Louis MacGregor, Alec Miners, Pete Weatherburn, Ford Hickson, Sharon Hutchinson, David Goldberg, Graham Foster, John Dillon, Alicia Thornton, Caroline Sabin, Valerie Delpech, Huw Price, Mark Nelson, Graham Cooke, Emma Thomson

Australia: Greg Dore, Jason Grebely, Margaret Hellard

France: Patrizia Carrieri, Marie Jauffret-Roustide

Norway: Olav Dalgard, Havard Midgard

Sweden: Martin Kaberg

Netherlands: Amy Matser, Maria Prins, Daniela K van Santen,

Slovenia: Mojca Maticic

Czech Republic: Viktor Mravcik

Denmark: Anne Ovrehus

Belgium: Geert Robaesys

Germany: Patrick Ingiliz, Klaus Jensen, Jurgen Rokstroh, Christoph Boesecke, Jens Reimer, Bernd Schulte, Ruth Zimmerman

US CDC: John Ward, John Zibbel, Susan Hariri, Claudia Velozzi

RTI International: Thomas Hoerger, Alex Kral

FUNDERS: National Institute for Drug Abuse R01 DA037773-01A1, UCSD Center for AIDS Research (P30 AI036214), US Center for Disease Control, Gilead Sciences, UK National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Evaluation of Interventions at University of Bristol. The views expressed are those of the authors and not necessarily those of the UK NHS, UK NIHR, UK Department of Health.