HCV treatment in active PWID: Is there a concern about reinfection?

A/Professor Jason Grebely
Disclosures

- Funding and speaker fees from AbbVie, Bristol-Myers Squibb, Cepheid, Gilead Sciences and Merck
HCV treatment and reinfection among active PWID

- DAA therapy is effective in people receiving OST and PWID (former/current)
- Reinfection will occur following successful DAA therapy in active PWID
- What is the risk of reinfection following DAA therapy among active PWID?
- What happens following HCV reinfection in the setting of DAA therapy?
- What will be required to limit the impact of HCV reinfection?
DAA therapy is effective for people receiving OST, former PWID and recent PWID
Defining populations of PWID

- Former PWID
- Current PWID
- Current PWUD
- PWID in OST
People receiving OST – phase II/III trials

Former/recent PWID

<table>
<thead>
<tr>
<th>Study</th>
<th>SVR12 (%)</th>
<th>Former/recent PWID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norton 2016</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Hull 2016</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>Conway 2016</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Bouscaillou 2017</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>Powis 2017</td>
<td>87%</td>
<td></td>
</tr>
<tr>
<td>Read 2017</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>Litwin 2017</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>Sulkowski 2017</td>
<td>90%</td>
<td></td>
</tr>
</tbody>
</table>

Lost to follow-up post-treatment

<table>
<thead>
<tr>
<th>ITT</th>
<th>mITT</th>
<th>ITT</th>
<th>mITT</th>
</tr>
</thead>
<tbody>
<tr>
<td>87%</td>
<td>91%</td>
<td>82%</td>
<td>91%</td>
</tr>
<tr>
<td>60</td>
<td>69</td>
<td>59</td>
<td>72</td>
</tr>
<tr>
<td>60</td>
<td>66</td>
<td>59</td>
<td>65</td>
</tr>
</tbody>
</table>

Recent PWID – The SIMPLIFY Study

- Kirby/UNSW sponsored, international open-label trial
- DAA treatment-naïve patients with GT1-6 chronic HCV infection (F0-4)
- People with recent injecting drug use (past six months)
- Electronic blister packs to monitor adherence

Week 0 Week 12 Week 24

Sofosbuvir/velpatasvir 400/100 mg od, n=103

SVR_{12} Six-monthly follow-up for reinfection

Week 24

3 yrs
Recent PWID – The SIMPLIFY Study

- 74% injecting in past 30 days, 35% G1a, 58% G1, 9% cirrhosis, DAA-treatment naïve
- One case of reinfection

<table>
<thead>
<tr>
<th></th>
<th>Response (%)</th>
<th>ETR</th>
<th>SVR12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96%</td>
<td>99/103</td>
<td>97/103</td>
</tr>
<tr>
<td></td>
<td>94%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study populations matter…

<table>
<thead>
<tr>
<th>Study name</th>
<th>HIV</th>
<th>OST</th>
<th>Recent drug use</th>
<th>Recent injecting drug use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christensen 2016</td>
<td>11%</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dore 2016 – CO-STAR</td>
<td>7%</td>
<td>100%</td>
<td>46%</td>
<td>25%</td>
</tr>
<tr>
<td>Norton 2016</td>
<td>NA</td>
<td>78%</td>
<td>67%</td>
<td>NA</td>
</tr>
<tr>
<td>Hull 2016</td>
<td>12%</td>
<td>53%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Conway 2016</td>
<td>15%</td>
<td>40%</td>
<td>100%</td>
<td>NA</td>
</tr>
<tr>
<td>Sulkowski 2017 – CHAMPS</td>
<td>100%</td>
<td>NA</td>
<td>25%</td>
<td>NA</td>
</tr>
<tr>
<td>Litwin 2017 – PREVAIL</td>
<td>14%</td>
<td>100%</td>
<td>65%</td>
<td>NA</td>
</tr>
<tr>
<td>Powis 2017</td>
<td>NA</td>
<td>24%</td>
<td>30%</td>
<td>11%</td>
</tr>
<tr>
<td>Read 2017</td>
<td>11%</td>
<td>25%</td>
<td>NA</td>
<td>75%</td>
</tr>
<tr>
<td>Bouscaillou 2017</td>
<td>0%</td>
<td>NA</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Grebely 2017 – SIMPLIFY</td>
<td>0%</td>
<td>57%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Should we be concerned about HCV reinfection among recent PWID?
Recurrence of HCV RNA – Relapse or Reinfection?

- HCV RNA testing
 - HCV RNA+ following SVR24 is likely to be reinfection (low relapse in DAA era)

- HCV genotyping
 - Genotype switch is indicative of reinfection

- HCV sequencing (Sanger or Next Generation Sequencing)
 - Nucleotide divergence/phylogenetic analysis
 - Depends on the region sequenced
What is the risk of HCV reinfection following therapy?
Type of injecting drug use/drug use frequency matters

Young J, et al. Clinical Infectious Diseases 2017
HCV reinfection following DAA therapy: C-EDGE CO-STAR

Through FW12
- 5 reinfections

Through FW24
- 1 reinfection

Through 6 months follow-up
- 2 reinfections

= 8 reinfections
- 4.0 reinfections per 100 person years

From ETR Through Long-term follow-up visit 1
- 8 reinfections
- 197.5 person years
- 4.0 per 100 p-yrs (95% CI: 1.7, 8.0)

From ETR Through Long-term follow-up visit 1 (persistence only)
- 5 reinfections
- 199.0 person years
- 2.5 per 100 p-yrs (95% CI: 0.8, 5.9)

Clearance of reinfection was observed in 3/8 (38%) reinfection cases

Dore GJ, et al. AASLD 2016, Boston, United States
Spontaneous clearance of reinfection post-DAA therapy

Dore GJ, et al. AASLD 2016, Boston, United States
The more you look, the more you find….

<table>
<thead>
<tr>
<th>Frequency of HCV RNA testing</th>
<th>Number of viremic events detected (%) of total</th>
<th>Apparent Clearance or Persistence of Reinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5/5 (100%)</td>
<td>Clearance</td>
</tr>
<tr>
<td>12</td>
<td>3/5 (60%)</td>
<td>Clearance</td>
</tr>
<tr>
<td>24</td>
<td>1/5 (20%)</td>
<td>Clearance</td>
</tr>
<tr>
<td>48</td>
<td>1/5 (20%)</td>
<td>Persistence</td>
</tr>
</tbody>
</table>

What will be required to limit the impact of HCV reinfection at a population level?
Strategies to prevent primary HCV infection

- Meta-analysis of the effects of risk-reduction interventions on HCV seroconversion - 26 eligible studies
- Behavioral interventions, substance-use treatment, syringe access, syringe disinfection and multicomponent interventions
- No impact of any single component interventions

Combined OST/NSP to prevent primary HCV infection

<table>
<thead>
<tr>
<th>Reference</th>
<th>Risk Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High NSP coverage</td>
<td></td>
</tr>
<tr>
<td>Hope, 2011</td>
<td>0.17 (0.02, 1.54)</td>
</tr>
<tr>
<td>Bruneau, 2015</td>
<td>0.63 (0.37, 1.07)</td>
</tr>
<tr>
<td>Van Den Berg, 2007</td>
<td>0.15 (0.06, 0.40)</td>
</tr>
<tr>
<td>Palmateer, 2014</td>
<td>0.24 (0.10, 0.59)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 64.4%, p = 0.038)</td>
<td>0.29 (0.13, 0.65)</td>
</tr>
<tr>
<td>Low NSP coverage</td>
<td></td>
</tr>
<tr>
<td>Hope, 2011</td>
<td>1.08 (0.31, 3.82)</td>
</tr>
<tr>
<td>Van Den Berg, 2007</td>
<td>1.04 (0.53, 2.05)</td>
</tr>
<tr>
<td>Palmateer, 2014</td>
<td>0.48 (0.24, 0.95)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 29.6%, p = 0.242)</td>
<td>0.76 (0.44, 1.33)</td>
</tr>
<tr>
<td>Overall (I-squared = 62.2%, p = 0.014)</td>
<td>0.47 (0.27, 0.80)</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

Platt L, et al. Cochrane Database of Systematic Reviews 2017
Optimization of OST and high-coverage NSP services

40% baseline chronic prevalence

Annual treatments per 1000 PWID

Coverage of OST and HCNSP (%)
Rapid DAA scale-up is required to limit reinfection

Strategies addressing individual-level risk: Bring a friend

“Bring your friends” strategy performed better than the random strategy

Plausible real-world treatment strategy as most people will know their injecting partners
Re-treatment of reinfection is critical

- Retreatment should be offered without stigma or discrimination
- Treatment should also be offered to injecting partner(s)
- People with reinfection are by the nature of their reinfection “high-risk”
- Opportunity to reduce the duration of reinfection viremia
Involvement of the community is crucial
HCV treatment and reinfection among active PWID

- DAA therapy is effective in people receiving OST and PWID (former/current)
- Reinfection will occur following successful DAA therapy in active PWID
- HCV reinfection risk is low among PWID, but not negligible
- Need further data on long-term reinfection outcomes, particularly active injectors
- Spontaneous clearance post-DAA therapy requires further study
- Rapid DAA scale-up and high-coverage OST/NSP crucial
- Need to evaluate interventions to address reinfection, including retreatment
Acknowledgements

UNSW Australia
Prof. Gregory Dore
A/Prof. Gail Matthews
Prof. Andrew Lloyd
Dr. Behzad Hajariizadeh
Dr. Maryam Alavi
Mr. Evan Cunningham
Dr. Tanya Applegate
Ms. Pip Marks
Dr. Marianne Martinello
Prof. Carla Treloar

Collaborators
Prof. Margaret Hellard (Australia)
Dr. Natasha Martin (USA)
Prof. Olav Dalgard (Norway)
Prof. Julie Bruneau (Canada)
Dr. Jordan Feld (Canada)
Dr. Brian Conway (Canada)
Prof. Alain Litwin (USA)
Dr. Homie Razavi (USA)
Ms. Tracy Swan (USA)