Mechanism of HIV Infection in Human Astrocytes

Guanhan Li

Section of Infections of the Nervous System
National Institutes of Health, Bethesda, MD
Turnover rate of astrocytes may be very low: 0.4% astrocytes/day in corpus callosum of mice.

Ranki et al. AIDS 1995
AIMS

- To determine if a persistent HIV infection can be established in astrocytes;

- To determine the mechanism of HIV entry into astrocytes.
Persistent HIV replication in astrocytes following introduction of proviral DNA

NL4-3/VSV-G = HIV pseudotyped virus
pNLENG1 = NL4-3_based reporter plasmid
Persistent HIV replication in astrocytes post-treatment with chloroquine

A Infection with T-tropic

B

C Infection with M-tropic

D

\[\text{ChQ} = \text{chloroquine} \]

\[\text{NLENG1} = \text{NL4-3-based reporter virus} \]

\[\text{SF162R3} = \text{SF163-based reporter virus} \]
Which receptor mediates the infection of astrocytes?

A. CD4-independent virus

B. CD4-dependent virus

C. Blocking with Anti-CD4 Ab
Low level of CD4 expression detected in astrocytes

Expression of CD4 mRNA in Different Cells (Semi-qPCR)

PDA = progenitor derived astrocytes
HFA = human fetal astrocytes
Transmission of HIV from the infected lymphocytes to astrocytes by cell-to-cell contact
The transmission from lymphocytes to astrocytes can be blocked by anti-CXCR4 or anti-CD4

Graphs:
- **x-axis:** Days post-infection
- **y-axis:** Total Number of Positive Cells
- Line graph showing the effect of Anti-CXCR4 + NLENG1-JK-Tat compared to NLENG1_JK-Tat alone.
- Bar graph comparing different treatments:
 - NLENG1_JK-Tat Ctrl
 - Anti-CD4 Ab
 - Anti-CXCR4 Ab
 - Anti-4f47 Integrin Ab
 - T20
 - AMD

Legend:
- Red line: Anti-CXCR4 + NLENG1-JK-Tat
- Blue line: NLENG1_JK-Tat alone

Key:
- **T20** = fusion inhibitor
- **AMD** = CXCR4 antagonist
HIV is released from T cells at sites of contact and travels along filopodia
1. HIV infection of astrocytes leads to persistent viral replication and thus is an important reservoir for the virus.

2. Cell-free HIV poorly infects astrocytes because of entrapping in endosomes/lysosomes post-entry.

3. Cell-to-cell contact with HIV-infected lymphocytes leads to more efficient infection of astrocytes.

4. Low level of CD4 in astrocytes plays an important role in HIV infection by both cell-free viruses and cell-cell contact.
ACKNOWLEDGEMENT

Johns Hopkins University
NIH/NINDS/SINS
Avindra Nath
Ashok Chauhan
Amanda Brown
Laura Jaeger
Joseph Steiner
Michael Delannoy
Eugene O. Major

NYU School of Dentistry
David Levy

National Cancer Institute, NIH
Thao Do
Jeffrey Lifson
Sriram Subramaniam

Funding: NINDS R01 NS039253
NIMH P30 Pilot Award
NINDS Intramural Fund
Transmission of HIV from Astrocytes to T cells

NLENG1-infected HFA (50 days) + Jurkat-Tat

1st day

5 days

22 days

122-day infected HFA

+ Jurkat-Tat 6 days

145-day infected HFA

+ Jurkat-Tat 18 days

93-day infected HFA

+ Jurkat E6-1 14 days
Evidences of CD4+ T Cells in the Brain of HIV+ Individuals

- **Peng H et al.** HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1β. *Glia* 2006; 54(6): 619-29.

 ![Diagram](image.png)

 Lymphocyte infiltration of the leptomeninges and of perivascular spaces occurred at all stages, but the frequency was significantly higher in asymptomatic carriers.

 The main component of mononuclear aggregates in group A (clinically unaffected) were lymphocytes, in contrast to group B (animals with AIDS), in which macrophages dominated.

 The most significant lesions following both routes (intraperitoneal and intravenous) of infection were lymphocyte-rich perivascular infiltrates. Infiltrates were composed of CD79+ B cells and CD3+ T cells. The latter population contained a mixture of CD4+ and CD8+ cells.

CNS-Immune reconstitution inflammatory syndrome (IRIS)

Riedel et al., Nature Cl Neurol 2006

Chronic T cell activation in CSF

Sinclair et al., JAIDS; 2008